Skip to main content

Advertisement

Log in

PD-1/PD-L1 as a prognostic factor in leukemia

  • Review Article
  • Published:
Journal of Hematopathology Aims and scope Submit manuscript

Abstract

PD-1 receptor is a component of the immune system that is recognized as a negative regulator of immune responses together with its ligand (PD-L1). In this study, we review the role of the immune system in leukemia cells through PD-1 and its ligand. Relevant literature was identified by a Pubmed search (1994–2017) of English-language papers using the terms “PD-1”, “PD-L1”, “leukemia”, and “prognosis”. PD-1 is an inhibitory receptor of CD28 family. Although initially introduced as a driving factor of apoptosis in the activated T cells, pre-clinical studies revealed the importance of this molecule as a checkpoint in ambient tolerance of the immune system. The ligand of this molecule is widely expressed on malignant cells in leukemia and inhibits the cytotoxic T cells. Therefore, targeting PD-1/PD-L1 can sensitize the malignant cells to chemotherapy and increase patient’s survival as a therapeutic approach. Recently, immunotherapy has shown promising results in pre-clinical studies using antibodies against PD-1/PD-L1 in different cancers, and it is hoped that the application of these antibodies in combination with other treatments (including chemotherapy) could inhibit leukemia cells and improve the patient’s conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Folkl A, Bienzle D (2010) Structure and function of programmed death (PD) molecules. Vet Immunol Immunopathol 134(1):33–38

    Article  CAS  PubMed  Google Scholar 

  2. Sharpe AH, Freeman GJ (2002) The B7–CD28 superfamily. Nat Rev Immunol 2(2):116–126

    Article  CAS  PubMed  Google Scholar 

  3. Ceeraz S, Nowak EC, Noelle RJ (2013) B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 34(11):556–563

    Article  CAS  PubMed  Google Scholar 

  4. Gianchecchi E, Delfino DV, Fierabracci A (2013) Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev 12(11):1091–1100

    Article  CAS  PubMed  Google Scholar 

  5. Sheppard K-A, Fitz LJ, Lee JM, Benander C, George JA, Wooters J et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Lett 574(1–3):37–41

    Article  CAS  PubMed  Google Scholar 

  6. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Science Signal 5(230):ra46–rara

    Article  Google Scholar 

  7. Ishida M, Iwai Y, Tanaka Y, Okazaki T, Freeman GJ, Minato N et al (2002) Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 84(1):57–62

    Article  CAS  PubMed  Google Scholar 

  8. Lázár-Molnár E, Yan Q, Cao E, Ramagopal U, Nathenson SG, Almo SC (2008) Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc Natl Acad Sci 105(30):10483–10488

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fife BT, Pauken KE (2011) The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci 1217(1):45–59

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation cell 2011;144(5):646–74

  11. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  12. Ok CY, Young KH (2017) Checkpoint inhibitors in hematological malignancies. J Hematol Oncol 10(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  13. Merelli B, Massi D, Cattaneo L, Mandalà M (2014) Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit Rev Oncol Hematol 89(1):140–165

    Article  PubMed  Google Scholar 

  14. Sehgal A, Whiteside TL, Boyiadzis M (2015) Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin Biol Ther 15(8):1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schnorfeil FM, Lichtenegger FS, Emmerig K, Schlueter M, Neitz JS, Draenert R et al (2015) T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol 8(1):1

    Article  CAS  Google Scholar 

  16. Chen X, Liu S, Wang L, Zhang W-G, Ji Y, Ma X (2008) Clinical significance of B7-H1( PD-L1) expression in human acute leukemia. Cancer Biol Ther 7(5):622–627

    Article  CAS  PubMed  Google Scholar 

  17. Shi L, Chen S, Yang L, Li Y (2013) The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol 6(1):1

    Article  CAS  Google Scholar 

  18. Mumprecht S, Schürch C, Schwaller J, Solenthaler M, Ochsenbein AF (2009) Programmed death 1 signaling on chronic myeloid leukemia–specific T cells results in T-cell exhaustion and disease progression. Blood 114(8):1528–1536

    Article  CAS  PubMed  Google Scholar 

  19. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474

    Article  PubMed  Google Scholar 

  20. Hossain DMS, Dos Santos C, Zhang Q, Kozlowska A, Liu H, Gao C et al (2014) Leukemia cell–targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood 123(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hasan UA, Trinchieri G, Vlach J (2005) Toll-like receptor signaling stimulates cell cycle entry and progression in fibroblasts. J Biol Chem 280(21):20620–20627

    Article  CAS  PubMed  Google Scholar 

  22. Rybka J, Butrym A, Wróbel T, Jaźwiec B, Stefanko E, Dobrzyńska O et al (2015) The expression of toll-like receptors in patients with acute myeloid leukemia treated with induction chemotherapy. Leuk Res 39(3):318–322

    Article  CAS  PubMed  Google Scholar 

  23. Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N et al (2010) In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol Immunother 59(12):1839–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krönig H, Kremmler L, Haller B, Englert C, Peschel C, Andreesen R et al (2014) Interferon-induced programmed death-ligand 1 (PD-L1/B7-H1) expression increases on human acute myeloid leukemia blast cells during treatment. Eur J Haematol 92(3):195–203

    Article  PubMed  Google Scholar 

  25. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110(1):296–304

    Article  CAS  PubMed  Google Scholar 

  26. Barton BE (2006) STAT3: a potential therapeutic target in dendritic cells for the induction of transplant tolerance. Expert Opin Ther Targets 10(3):459–470

    Article  CAS  PubMed  Google Scholar 

  27. Wölfle SJ, Strebovsky J, Bartz H, Sähr A, Arnold C, Kaiser C et al (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41(2):413–424

    Article  PubMed  Google Scholar 

  28. Fenaux P, editor Myelodysplastic syndromes: from pathogenesis and prognosis to treatment. Seminars in hematology; 2004: Elsevier

  29. Marisavljević D, Kraguljac N, Rolović Z (2006) Immunologic abnormalities in myelodysplastic syndromes. Med Oncol 23(3):385–391

    Article  PubMed  Google Scholar 

  30. Shioi Y, Tamura H, Yokose N, Satoh C, Dan K, Ogata K (2007) Increased apoptosis of circulating T cells in myelodysplastic syndromes. Leuk Res 31(12):1641–1648

    Article  CAS  PubMed  Google Scholar 

  31. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M et al (1997) Overexpression of tumor necrosis factor (TNF)-a and interferon (IFN)-g by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 11(12):2049–2054

    Article  CAS  PubMed  Google Scholar 

  32. Koike M, Ishiyama T, Tomoyasu S, Tsuruoka N (1995) Spontaneous cytokine overproduction by peripheral blood mononuclear cells from patients with myelodysplastic syndromes and aplastic anemia. Leuk Res 19(9):639–644

    Article  CAS  PubMed  Google Scholar 

  33. Sawanobori M, Yamaguchi S, Hasegawa M, Inoue M, Suzuki K, Kamiyama R et al (2003) Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk Res 27(7):583–591

    Article  CAS  PubMed  Google Scholar 

  34. Cheng G, Baltimore D (1996) TANK, a co-inducer with TRAF2 of TNF-and CD 40L-mediated NF-kappaB activation. Genes Dev 10(8):963–973

    Article  CAS  PubMed  Google Scholar 

  35. Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M, et al. Interferon-and tumor necrosis factor-induce an immunoinhibitory molecule, B7-H1, via nuclear factor-B activation in blasts in myelodysplastic syndromes. BLOOD. 2010;116(7)

  36. Yamashita T, Tamura H, Satoh C, Shinya E, Takahashi H, Chen L et al (2009) Functional B7. 2 and B7-H2 molecules on myeloma cells are associated with a growth advantage. Clin Cancer Res 15(3):770–777

    Article  CAS  PubMed  Google Scholar 

  37. Kantarjian H, Issa JPJ, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes. Cancer 106(8):1794–1803

    Article  CAS  PubMed  Google Scholar 

  38. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jabbour E, Garcia-Manero G, Batty N, Shan J, O'Brien S, Cortes J et al (2010) Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer 116(16):3830–3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bontkes HJ, Ruben JM, Alhan C, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA (2012) Azacitidine differentially affects CD4 pos T-cell polarization in vitro and in vivo in high risk myelodysplastic syndromes. Leuk Res 36(7):921–930

    Article  CAS  PubMed  Google Scholar 

  41. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng Q-R et al (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28(6):1280–1288

    Article  CAS  PubMed  Google Scholar 

  42. Shankland KR, Armitage JO, Hancock BW (2012) Non-hodgkin lymphoma. Lancet 380(9844):848–857

    Article  PubMed  Google Scholar 

  43. Arora M, Gowda S, Tuscano J (2016) A comprehensive review of lenalidomide in B-cell non-Hodgkin lymphoma. Ther Adv Hematol 2040620716652861

  44. Cultrera JL, Dalia SM (2012) Diffuse large B-cell lymphoma: current strategies and future directions. Cancer Control 19(3):204–213

    PubMed  Google Scholar 

  45. Dong L, Lv H, Li W, Song Z, Li L, Zhou S et al (2016) Co-expression of PD-L1 and p-AKT is associated with poor prognosis in diffuse large B-cell lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR pathway in tumor cells. Oncotarget

  46. Uddin S, Hussain AR, Siraj AK, Manogaran PS, Al-Jomah NA, Moorji A et al (2006) Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 108(13):4178–4186

    Article  CAS  PubMed  Google Scholar 

  47. Xu Z-Z, Xia Z-G, Wang A-H, Wang W-F, Liu Z-Y, Chen L-Y et al (2013) Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance and inhibitory effect of rituximab. Ann Hematol 92(10):1351–1358

    Article  CAS  PubMed  Google Scholar 

  48. Bally AP, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R et al (2015) NF-κB regulates PD-1 expression in macrophages. J Immunol 194(9):4545–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nagel D, Vincendeau M, Eitelhuber A, Krappmann D (2014) Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene 33(50):5655–5665

    Article  CAS  PubMed  Google Scholar 

  50. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M et al (2005) Small molecule inhibitors of IκB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11(1):28–40

    CAS  PubMed  Google Scholar 

  51. Roschewski M, Staudt LM, Wilson WH (2014) Diffuse large B-cell lymphoma—treatment approaches in the molecular era. Nat Rev Clin Oncol 11(1):12–23

    Article  CAS  PubMed  Google Scholar 

  52. Yang Y, Shaffer AL, Emre NT, Ceribelli M, Zhang M, Wright G et al (2012) Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 21(6):723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turturro F (2015) Constitutive NF-κB activation underlines major mechanism of drug resistance in relapsed refractory diffuse large B cell lymphoma. Biomed Res Int 2015

  54. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E et al (2010) Integrative analysis reveals selective 9p24. 1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17):3268–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351(21):2159–2169

    Article  CAS  PubMed  Google Scholar 

  56. Yang Z-Z, Grote D, Ziesmer S, Xiu B, Novak AJ, Ansell SM (2015) PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J 5(2):e281

    Article  PubMed  PubMed Central  Google Scholar 

  57. Saki N, Abroun S, Soleimani M, Mortazavi Y, Kaviani S, Arefian E (2014) The roles of miR-146a in the differentiation of Jurkat T-lymphoblasts. Hematology 19(3):141–147

    Article  CAS  PubMed  Google Scholar 

  58. Yang Z-Z, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+ CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107(9):3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carreras J, Lopez-Guillermo A, Roncador G, Villamor N, Colomo L, Martinez A et al (2009) High numbers of tumor-infiltrating programmed cell death 1–positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol 27(9):1470–1476

    Article  PubMed  Google Scholar 

  60. Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE et al (2013) High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 121(8):1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Küppers R (2009) Molecular biology of Hodgkin lymphoma. ASH Educ Prog Book 2009(1):491–496

    Google Scholar 

  62. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci 91(23):10962–10966

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bräuninger A, Schmitz R, Bechtel D, Renné C, Hansmann ML, Küppers R (2006) Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer 118(8):1853–1861

    Article  PubMed  Google Scholar 

  64. Küppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9(1):15–27

    Article  PubMed  Google Scholar 

  65. Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A et al (2008) Expression of CCR5 receptors on Reed–Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 122(4):769–776

    Article  CAS  PubMed  Google Scholar 

  66. Skinnider BF, Mak TW (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99(12):4283–4297

    Article  CAS  PubMed  Google Scholar 

  67. Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O'Donnell E et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18(6):1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mancao C, Hammerschmidt W (2007) Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 110(10):3715–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A et al (2009) B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci 100(11):2093–2100

    Article  CAS  PubMed  Google Scholar 

  70. Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M et al (2008) PD-1–PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111(6):3220–3224

    Article  CAS  PubMed  Google Scholar 

  71. Rad SMAH, Bavarsad MS, Arefian E, Jaseb K, Shahjahani M, Saki N (2013) The role of microRNAs in stemness of cancer stem cells. Oncol Rev 7(1):8

    Article  Google Scholar 

  72. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  73. Navarro A, Diaz T, Martinez A, Gaya A, Pons A, Gel B et al (2009) Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood 114(14):2945–2951

    Article  CAS  PubMed  Google Scholar 

  74. Wang X, Li J, Dong K, Lin F, Long M, Ouyang Y et al (2015) Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27(3):443–452

    Article  CAS  PubMed  Google Scholar 

  75. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y et al (2016) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 108(1):djv303

    Article  PubMed  Google Scholar 

  76. Shikama Y, Cao M, Ono T, Feng X, Noji H, Kimura H et al (2016) Reduction of c-Fos via overexpression of miR-34a results in enhancement of TNF-production by LPS in neutrophils from myelodysplastic syndrome patients. PLoS One 11(8):e0158527

    Article  PubMed  PubMed Central  Google Scholar 

  77. García-Teijido P, Cabal ML, Fernández IP, Pérez YF (2016) Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clin Med Insights Oncol 10(Suppl 1):31

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ et al (2003) Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33(10):2706–2716

    Article  CAS  PubMed  Google Scholar 

  79. Armand P (2015) Immune checkpoint blockade in hematologic malignancies. Blood 125(22):3393–3400

    Article  CAS  PubMed  Google Scholar 

  80. Seghatoleslami M, Ketabchi N, Ordo A, Asl JM, Golchin N, Saki N. Coexistence of P190 BCR/ABL transcript and CALR 52-bp deletion in chronic myeloid leukemia blast crisis: a case report. Mediterranean journal of hematology and infectious diseases. 2016;8(1)

  81. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. Journal of Clinical Oncology. 2016:JCO659789

  82. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen Y-B et al (2013) Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 31(33):4199–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N et al (2014) Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol 15(1):69–77

    Article  CAS  PubMed  Google Scholar 

  84. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319

    Article  PubMed  Google Scholar 

  85. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S et al (2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol 17(9):1283–1294

    Article  CAS  PubMed  Google Scholar 

  86. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051

    Article  CAS  PubMed  Google Scholar 

  87. San Miguel J, Mateos M-V, Shah JJ, Ocio EM, Rodriguez-Otero P, Reece D et al (2015) Pembrolizumab in combination with lenalidomide and low-dose dexamethasone for relapsed/refractory multiple myeloma (RRMM): keynote-023. Blood 126(23):505

    Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in the Golestan Hospital clinical research development unit, Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

N.S. conceived the manuscript and revised it; H.R., S.N.H., and M.B. wrote the manuscript. M.S., M.B., and H.R. prepared the tables and figures.

Corresponding author

Correspondence to Najmaldin Saki.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• We review how PD-1 regulates the immune response.

• The role of PD-1/PD-L1 in the evasion of leukemia cells from immune responses.

• Cytokines such as IL-6 and IFN-γ induce PD-L1 expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeeyan, H., Hassani, S.N., Barati, M. et al. PD-1/PD-L1 as a prognostic factor in leukemia. J Hematopathol 10, 17–24 (2017). https://doi.org/10.1007/s12308-017-0293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12308-017-0293-z

Keywords

Navigation