Skip to main content

Advertisement

Log in

Investigating Effects of Acidic pH on Proliferation, Invasion and Drug-Induced Apoptosis in Lymphoblastic Leukemia

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

Some studies have shown that extracellular pH in tumors, which results in tumor progression, is less than that in normal tissues. The aim of this study was to investigate the effects of extracellular acidic pH on proliferation, invasion, and drug-induced apoptosis in acute lymphoblastic cells. The cells were cultured in different pH (pH 6.6 and pH 7.4) for 12 days. Cell proliferation was assessed by MTT assay and cell invasion was assayed by invasion assay and gene expression analysis of MMP-9. Drug-induced apoptosis was evaluated after exposure to doxorubicin for 24 hours by annexin V/PI staining and gene expression analysis of BAX pro-apoptotic protein. The results indicated the enhanced growth and invasion of leukemic cells at pH 6.6 (P ≤ 0.05). Furthermore, the cells at pH 6.6 were resistant to apoptosis by doxorubicin (P ≤ 0.05). It can be concluded that acidic pH increases the proliferation, invasion and reduces the drug-induced apoptosis in acute lymphoblastic leukemia. Extracellular acidity can influence the behavior of leukemic cells and therefore, the manipulation of extracellular liquid can be selected as a therapeutic strategy for leukemia, especially for acute lymphoblastic leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. López-Lázaro M (2010) A New View of Carcinogenesis and an Alternative Approach to Cancer Therapy. Mol Med 16(3–4):144–153

    PubMed  Google Scholar 

  2. Merl D, Chen JL-Y, Chi J-T, West M (2009) An Integrative Analysis of Cancer Gene Expression Studies Using Bayesian Latent Factor Modeling. The annals of applied statistics 3(4):1675

    Article  PubMed  PubMed Central  Google Scholar 

  3. Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Salvador J, Robles A, Lopez-Lazaro M (2011) Role Of The Intracellular pH In The metabolic switch between oxidative phosphorylation and aerobic glycolysis-relevance to cancer

  4. Choi SYC, Collins CC, Gout PW, Wang Y (2013) Cancer-Generated Lactic Acid: a Regulatory, Immunosuppressive Metabolite? J Pathol 230(4):350–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silva AS, Yunes JA, Gillies RJ, Gatenby RA (2009) The Potential Role of Systemic Buffers in Reducing Intratumoral Extracellular pH and Acid-Mediated Invasion. Cancer Res 69(6):2677–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Hashim AI, Morse DL, Raghunand N, Gatenby RA (2009) Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases. Cancer Res 69(6):2260–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y (2013) Acidic Extracellular Microenvironment and Cancer. Cancer Cell Int 13(1):1

    Article  Google Scholar 

  8. McCarty MF, Whitaker J (2010) Manipulating Tumor Acidification as a Cancer Treatment Strategy. Altern Med Rev 15(3):264–272

    PubMed  Google Scholar 

  9. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and Acidosis independently up-Regulate Vascular Endothelial Growth Factor Transcription in Brain Tumors in Vivo. Cancer Res 61(16):6020–6024

    CAS  PubMed  Google Scholar 

  10. López-Lázaro M (2006) HIF-1: Hypoxia-Inducible Factor or Dysoxia-Inducible Factor? FASEB J 20(7):828–832

    Article  PubMed  Google Scholar 

  11. Gordan JD, Bertout JA, Hu C-J, Diehl JA, Simon MC (2007) HIF-2α Promotes Hypoxic Cell Proliferation by Enhancing c-Myc Transcriptional Activity. Cancer Cell 11(4):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masson N, Ratcliffe PJ (2014) Hypoxia Signaling Pathways in Cancer Metabolism: the Importance of Co-Selecting Interconnected Physiological Pathways. Cancer & metabolism 2(1):1

    Article  Google Scholar 

  13. Xu L, Fidler IJ (2000) Acidic pH-Induced Elevation in Interleukin 8 Expression by Human Ovarian Carcinoma Cells. Cancer Res 60(16):4610–4616

    CAS  PubMed  Google Scholar 

  14. Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic Extracellular pH Promotes Experimental Metastasis of Human Melanoma Cells in Athymic Nude Mice. Cancer Res 66(13):6699–6707

    Article  CAS  PubMed  Google Scholar 

  15. Xu L, Fukumura D, Jain RK (2002) Acidic Extracellular pH Induces Vascular Endothelial Growth Factor (VEGF) in Human Glioblastoma Cells via ERK1/2 MAPK Signaling Pathway MECHANISM OF LOW pH-INDUCED VEGF. J Biol Chem 277(13):11368–11374

    Article  CAS  PubMed  Google Scholar 

  16. Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, Greenberg RA, Flaherty KT, Rathmell WK, Keith B (2008) HIF-α Effects on c-Myc Distinguish two Subtypes of Sporadic VHL-Deficient Clear Cell Renal Carcinoma. Cancer Cell 14(6):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raghunand N, He X, Van Sluis R, Mahoney B, Baggett B, Taylor C, Paine-Murrieta G, Roe D, Bhujwalla Z, Gillies R (1999) Enhancement of Chemotherapy by Manipulation of Tumour pH. Br J Cancer 80(7):1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Milito A, Fais S (2005) Tumor acidity, chemoresistance and proton pump inhibitors

  19. Alimoghaddam K, Jahani M, Mousavi S, Bahar B, Hamidieh A, Vaezi M, Ghaffari F, Jalali A, Sharifi-Aliabadi L, Ghavamzadeh A (2015) Allogeneic Stem Cell Transplantation Outcome in Acute Lymphoblastic Leukemia Patients. International Journal of Hematology-Oncology and Stem Cell Research 6(4):1–4

    Google Scholar 

  20. Onciu M (2009) Acute Lymphoblastic Leukemia. Hematol Oncol Clin N Am 23(4):655–674

    Article  Google Scholar 

  21. Aifantis I, Raetz E, Buonamici S (2008) Molecular Pathogenesis of T-Cell Leukaemia and Lymphoma. Nat Rev Immunol 8(5):380–390

    Article  CAS  PubMed  Google Scholar 

  22. ÀÏÎÏÒÎÇÀ ÑÀ, ÐÀÇËÈ È, ÏÐÅÏÀÐÀÒÀÌÈ ÍÏ (2001) Comparative Analysis of Apoptosis Induced by Various Anticancer Drugs in Jurkat Cells. Exp Oncol 23:46–50

    Google Scholar 

  23. Baxter E, Windloch K, Gannon F, Lee JS (2014) Epigenetic Regulation in Cancer Progression. Cell & bioscience 4(1):1

    Article  Google Scholar 

  24. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  25. You JS, Jones PA (2012) Cancer Genetics and Epigenetics: two Sides of the Same Coin? Cancer Cell 22(1):9–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calorini L, Peppicelli S, Bianchini F (2012) Extracellular Acidity as Favouring Factor of Tumor Progression and Metastatic Dissemination. Exp Oncol 34(2):79–84

    CAS  PubMed  Google Scholar 

  27. Lu W, Logsdon CD, Abbruzzese JL (2013) Cancer Metabolism and its Therapeutic Implications. Journal of Cell Science & Therapy 4(2):143–152

  28. Schornack PA, Gillies RJ (2003) Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors. Neoplasia 5(2):135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, Gatenby RA, Gillies RJ (2008) Acid Treatment of Melanoma Cells Selects for Invasive Phenotypes. Clinical & experimental metastasis 25(4):411–425

    Article  CAS  Google Scholar 

  30. Yu Q, Stamenkovic I (2000) Cell Surface-Localized Matrix Metalloproteinase-9 proteolytically Activates TGF-β and Promotes Tumor Invasion and Angiogenesis. Genes Dev 14(2):163–176

    PubMed  PubMed Central  Google Scholar 

  31. Koujan SE, Gargarib BP, Khalili M (2015) Matrix Metalloproteinases and Breast Cancer. Thrita 4(1):e21959

  32. Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM (2003) Extracellular Acidification Alters Lysosomal Trafficking in Human Breast Cancer Cells. Neoplasia 5(6):533–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones RG, Thompson CB (2009) Tumor Suppressors and Cell Metabolism: a Recipe for Cancer Growth. Genes Dev 23(5):537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X, Hägg M, Linder S, Fais S, Codogno P (2012) Autophagy Is a Protective Mechanism for Human Melanoma Cells under Acidic Stress. J Biol Chem 287(36):30664–30676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E, Proemsey JB, Lloyd MC, Sloane BF, Gillies RJ (2012) Chronic Autophagy Is a Cellular Adaptation to Tumor Acidic pH Microenvironments. Cancer Res 72(16):3938–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hashim AI, Cornnell HH, Ribeiro MLC, Abrahams D, Cunningham J, Lloyd M, Martinez GV, Gatenby RA, Gillies RJ (2011) Reduction of Metastasis Using a Non-Volatile Buffer. Clinical & experimental metastasis 28(8):841–849

    Article  CAS  Google Scholar 

  37. Zhao Y, Butler EB, Tan M (2013) Targeting Cellular Metabolism to Improve Cancer Therapeutics. Cell Death Dis 4(3):e532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  39. Wang X (2001) The Expanding Role of Mitochondria in Apoptosis. Genes Dev 15(22):2922–2933

    CAS  PubMed  Google Scholar 

  40. Azoulay-Zohar H, Israelson A, Salah A-H, Shoshan-Barmatz V (2004) In Self-Defence: Hexokinase Promotes Voltage-Dependent Anion Channel Closure and Prevents Mitochondria-Mediated Apoptotic Cell Death. Biochem J 377(2):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thews O, Gassner B, Kelleher DK, Schwerd G, Gekle M (2006) Impact of Extracellular Acidity on the Activity of P-Glycoprotein and the Cytotoxicity of Chemotherapeutic Drugs. Neoplasia 8(2):143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G (2007) Acidic Extracellular pH Shifts Colorectal Cancer Cell Death from Apoptosis to Necrosis upon Exposure to Propionate and Acetate, Major End-Products of the Human Probiotic Propionibacteria. Apoptosis 12(3):573–591

    Article  CAS  PubMed  Google Scholar 

  43. Bose P, Qubaiah O (2011) A Review of Tumour Lysis Syndrome with Targeted Therapies and the Role of Rasburicase. J Clin Pharm Ther 36(3):299–326

    Article  CAS  PubMed  Google Scholar 

  44. Cairo MS, Bishop M (2004) Tumour Lysis Syndrome: New Therapeutic Strategies and Classification. Br J Haematol 127(1):3–11

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Stem Cell Technology Research Center for technical assistance supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Atashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohloli, M., Atashi, A., Soleimani, M. et al. Investigating Effects of Acidic pH on Proliferation, Invasion and Drug-Induced Apoptosis in Lymphoblastic Leukemia. Cancer Microenvironment 9, 119–126 (2016). https://doi.org/10.1007/s12307-016-0187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-016-0187-0

Keywords

Navigation