Skip to main content
Log in

Fixation techniques for the anterior cruciate ligament reconstruction: early follow-up. A systematic review of level I and II therapeutic studies

  • Review
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

The purpose of our study was that to systematically review the fixation techniques for the ACL reconstruction and associated clinical outcomes at the early follow-up. Systematic search on three electronic databases (Cochrane register, Medline and Embase) of fixation devices used for primary ACL reconstruction with doubled semitendinosus and gracilis and bone–patellar tendon–bone autografts in randomized clinical trials of level I and II of evidence published from January 2001 to December 2011. Therapeutic studies collected were with a minimum 12-month follow-up, and the clinical outcomes were evaluated by at least one of International Knee Documentation Committee, Lysholm and Tegner functional scales and at least one of the following knee stability tests: arthrometric AP tibial translation, Lachman test and pivot-shift test. Nineteen articles met the inclusion criteria. At the femoral side cross-pin, metallic interference screw, bioabsorbable interference screw, and suspensory device were used in 32.3, 27.3, 24.8, 15.5 % of patients, respectively. At the tibial side fixation was achieved with metallic interference screw, bioabsorbable interference screw, screw and plastic sheath, screw post and cross-pin in 38.7, 31, 15.7, 12.8, and 1.7 % of patients, respectively. Side-to-side anterior–posterior tibial translation was 1.9 ± 0.9, 1.5 ± 0.9, 1.5 ± 0.8, 2.2 ± 0.4 mm for metallic interference screw, bioabsorbable screw, cross-pin and suspensory device, respectively. At least two-third of all the patients achieved good-to-excellent clinical outcomes. Rate of failure was 6.1, 3.3, 1.7 and 1.2 % for bioabsorbable interference screw, metallic interference screw, cross-pin and suspensory device, respectively. Clinical outcomes are good to excellent in almost two-third of the patients but several pitfalls that affect the current fixation techniques as graft tensioning such as graft-tunnel motion are still unaddressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Woo SL, Thomas M, Chan Saw SS (2004) Contribution of biomechanics, orthopaedics and rehabilitation: the past present and future. Surgeon 2:125–136

    Article  CAS  PubMed  Google Scholar 

  2. Fu FH, Shen W, Starman JS, Okeke N, Irrgang JJ (2008) Primary anatomic double-bundle anterior cruciate ligament reconstruction: a preliminary 2-year prospective study. Am J Sports Med 36:1263–1274

    Article  PubMed  Google Scholar 

  3. Tiamklang T, Sumanont S, Foocharoen T, Laopaiboon M (2012) Double-bundle versus single-bundle reconstruction for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev 11:CD008413

    PubMed  Google Scholar 

  4. Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F (2004) Anterior cruciate ligament reconstruction: bone–patellar tendon–bone compared with double semitendinosus and gracilis tendon grafts: a prospective, randomized clinical trial. J Bone Jt Surg Am 86A:2143–2155

    Google Scholar 

  5. Zamarra G, Fisher MB, Woo SL, Cerulli G (2010) Biomechanical evaluation of using one hamstrings tendon for ACL reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthrosc 18:11–19

    Article  PubMed  Google Scholar 

  6. Ciccone WJ 2nd, Bratton DR, Weinstein DM, Elias JJ (2006) Viscoelasticity and temperature variations decrease tension and stiffness of hamstring tendon grafts following anterior cruciate ligament reconstruction. J Bone Jt Sur Am 88:1071–1078

    Article  Google Scholar 

  7. Graf BK, Vanderby R Jr, Ulm MJ, Rogalski RP, Thielke RJ (1994) Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 10:90–96

    Article  CAS  PubMed  Google Scholar 

  8. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  9. Nicholas SJ, D’Amato MJ, Mullaney MJ, Tyler TF, Kolstad K, McHugh MP (2004) A prospectively randomized double-blind study on the effect of initial graft tension on knee stability after anterior cruciate ligament reconstruction. Am J Sports Med 32:1881–1886

    Article  PubMed  Google Scholar 

  10. Clark R, Olsen RE, Larson BJ, Goble EM, Farrer RP (1998) Cross-pin femoral fixation: a new technique for hamstring anterior cruciate ligament reconstruction of the knee. Arthroscopy 14:258–267

    Article  CAS  PubMed  Google Scholar 

  11. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31:174–181

    PubMed  Google Scholar 

  12. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188

    PubMed  Google Scholar 

  13. Karchin A, Hull ML, Howell SM (2004) Initial tension and anterior load-displacement behavior of high-stiffness anterior cruciate ligament graft constructs. J Bone Jt Surg Am 86A:1675–1683

    Google Scholar 

  14. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22:660–668

    Article  PubMed  Google Scholar 

  15. Drogset JO, Grontvedt T, Tegnander A (2005) Endoscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws: a prospective randomized study of the clinical outcome. Am J Sports Med 33:1160–1165

    Article  PubMed  Google Scholar 

  16. Drogset JO, Strand T, Uppheim G, Odegard B, Boe A, Grontvedt T (2010) Autologous patellar tendon and quadrupled hamstring grafts in anterior cruciate ligament reconstruction: a prospective randomized multicenter review of different fixation methods. Knee Surg Sports Traumatol Arthrosc 18:1085–1093

    Article  PubMed  Google Scholar 

  17. Eriksson K, Anderberg P, Hamberg P, Lofgren AC, Bredenberg M, Westman I et al (2001) A comparison of quadruple semitendinosus and patellar tendon grafts in reconstruction of the anterior cruciate ligament. J Bone Jt Surg Br 83:348–354

    Article  CAS  Google Scholar 

  18. Jarvela T, Moisala AS, Sihvonen R, Jarvela S, Kannus P, Jarvinen M (2008) Double-bundle anterior cruciate ligament reconstruction using hamstring autografts and bioabsorbable interference screw fixation: prospective, randomized, clinical study with 2-year results. Am J Sports Med 36:290–297

    Article  PubMed  Google Scholar 

  19. Laxdal G, Kartus J, Eriksson BI, Faxen E, Sernert N, Karlsson J (2006) Biodegradable and metallic interference screws in anterior cruciate ligament reconstruction surgery using hamstring tendon grafts: prospective randomized study of radiographic results and clinical outcome. Am J Sports Med 34:1574–1580

    Article  PubMed  Google Scholar 

  20. Rose T, Hepp P, Venus J, Stockmar C, Josten C, Lill H (2006) Prospective randomized clinical comparison of femoral transfixation versus bioscrew fixation in hamstring tendon ACL reconstruction–a preliminary report. Knee Surg Sports Traumatol Arthrosc 14:730–738

    Article  PubMed  Google Scholar 

  21. Stener S, Ejerhed L, Sernert N, Laxdal G, Rostgard-Christensen L, Kartus J (2010) A long-term, prospective, randomized study comparing biodegradable and metal interference screws in anterior cruciate ligament reconstruction surgery: radiographic results and clinical outcome. Am J Sports Med 38:1598–1605

    Article  PubMed  Google Scholar 

  22. Harilainen A, Sandelin J (2009) A prospective comparison of 3 hamstring ACL fixation devices–Rigidfix, BioScrew, and Intrafix–randomized into 4 groups with 2 years of follow-up. Am J Sports Med 37:699–706

    Article  PubMed  Google Scholar 

  23. Harilainen A, Sandelin J, Jansson KA (2005) Cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction with hamstring tendons: results of a controlled prospective randomized study with 2-year follow-up. Arthroscopy 21:25–33

    Article  PubMed  Google Scholar 

  24. Mariani PP, Camillieri G, Margheritini F (2001) Transcondylar screw fixation in anterior cruciate ligament reconstruction. Arthroscopy 17:717–723

    Article  CAS  PubMed  Google Scholar 

  25. Stengel D, Casper D, Bauwens K, Ekkernkamp A, Wich M (2009) Bioresorbable pins and interference screws for fixation of hamstring tendon grafts in anterior cruciate ligament reconstruction surgery: a randomized controlled trial. Am J Sports Med 37:1692–1698

    Article  PubMed  Google Scholar 

  26. Myers P, Logan M, Stokes A, Boyd K, Watts M (2008) Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up. Arthroscopy 24:817–823

    Article  PubMed  Google Scholar 

  27. Ibrahim SA, Hamido F, Al Misfer AK, Mahgoob A, Ghafar SA, Alhran H (2009) Anterior cruciate ligament reconstruction using autologous hamstring double bundle graft compared with single bundle procedures. J Bone Jt Surg Br 91:1310–1315

    Article  CAS  Google Scholar 

  28. Colvin A, Sharma C, Parides M, Glashow J (2011) What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction? A meta-analysis. Clin Orthop Related Res 469:1075–1081

    Article  Google Scholar 

  29. Micucci CJ, Frank DA, Kompel J, Muffly M, Demeo PJ, Altman GT (2010) The effect of interference screw diameter on fixation of soft-tissue grafts in anterior cruciate ligament reconstruction. Arthroscopy 26:1105–1110

    Article  PubMed  Google Scholar 

  30. Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN (2004) Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 32:635–640

    Article  PubMed  Google Scholar 

  31. Giurea M, Zorilla P, Amis AA, Aichroth P (1999) Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 27:621–625

    CAS  PubMed  Google Scholar 

  32. Fu K, Pack DW, Klibanov AM, Langer R (2000) Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 17:100–106

    Article  CAS  PubMed  Google Scholar 

  33. Monaco E, Labianca L, Speranza A, Agro AM, Camillieri G, D’Arrigo C et al (2010) Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft. J Ortho Sci 15:125–131

    Article  CAS  Google Scholar 

  34. Hoher J, Livesay GA, Ma CB, Withrow JD, Fu FH, Woo SL (1999) Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc 7:215–219

    Article  CAS  PubMed  Google Scholar 

  35. Choi NH, Son KM, Yoo SY, Victoroff BN (2012) Femoral tunnel widening after hamstring anterior cruciate ligament reconstruction with bioabsorbable transfix. Am J Sports Med 40:383–387

    Article  PubMed  Google Scholar 

  36. Clancy WG Jr, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Jt Surg Am 63:1270–1284

    Google Scholar 

  37. Weiler A, Hoffmann RF, Sudkamp NP, Siepe CJ, Haas NP (1999) Replacement of the anterior cruciate ligament. Biomechanical studies for patellar and semitendinosus tendon fixation with a poly(D, L-lactide) interference screw. Der Unfallchirurg 102:115–123

    Article  CAS  PubMed  Google Scholar 

  38. L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238

    Article  PubMed  Google Scholar 

  39. Jorgensen U, Thomsen HS (2000) Behavior of the graft within the bone tunnels following anterior cruciate ligament reconstruction, studied by cinematic magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 8:32–35

    Article  CAS  PubMed  Google Scholar 

  40. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790–1800

    Article  PubMed  Google Scholar 

  41. Brucker PU, Lorenz S, Imhoff AB (2006) Aperture fixation in arthroscopic anterior cruciate ligament double-bundle reconstruction. Arthroscopy 22(1250):e1–e6

    PubMed  Google Scholar 

  42. Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    PubMed  Google Scholar 

  43. Kim SJ, Bae JH, Song SH, Lim HC (2013) Bone tunnel widening with autogenous bone plugs versus bioabsorbable interference screws for secondary fixation in ACL reconstruction. J Bone Jt Surg Am 95:103–108

    Article  Google Scholar 

  44. Austin JC, Phornphutkul C, Wojtys EM (2007) Loss of knee extension after anterior cruciate ligament reconstruction: effects of knee position and graft tensioning. J Bone Jt Surg Am 89:1565–1574

    Article  Google Scholar 

  45. Numazaki H, Tohyama H, Nakano H, Kikuchi S, Yasuda K (2002) The effect of initial graft tension in anterior cruciate ligament reconstruction on the mechanical behaviors of the femur-graft-tibia complex during cyclic loading. Am J Sports Med 30:800–805

    PubMed  Google Scholar 

  46. Kaeding C, Farr J, Kavanaugh T, Pedroza A (2005) A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 21:147–151

    Article  PubMed  Google Scholar 

  47. Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2004) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 20:122–128

    Article  PubMed  Google Scholar 

  48. Moisala AS, Jarvela T, Paakkala A, Paakkala T, Kannus P, Jarvinen M (2008) Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 16:1080–1086

    Article  PubMed  Google Scholar 

  49. Price R, Stoney J, Brown G (2010) Prospective randomized comparison of endobutton versus cross-pin femoral fixation in hamstring anterior cruciate ligament reconstruction with 2-year follow-up. ANZ J Surg 80:162–165

    Article  PubMed  Google Scholar 

  50. Sherman SL, Chalmers PN, Yanke AB, Bush-Joseph CA, Verma NN, Cole BJ et al (2012) Graft tensioning during knee ligament reconstruction: principles and practice. J Am Acad Ortho Surg 20:633–645

    Article  Google Scholar 

  51. Fleming BC, Fadale PD, Hulstyn MJ, Shalvoy RM, Oksendahl HL, Badger GJ et al (2013) The effect of initial graft tension after anterior cruciate ligament reconstruction: a randomized clinical trial with 36-month follow-up. Am J Sports Med 41:25–34

    Article  PubMed Central  PubMed  Google Scholar 

  52. Foldager C, Jakobsen BW, Lund B, Christiansen SE, Kashi L, Mikkelsen LR et al (2010) Tibial tunnel widening after bioresorbable poly-lactide calcium carbonate interference screw usage in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18:79–84

    Article  PubMed  Google Scholar 

  53. Georgoulis AD, Ristanis S, Moraiti CO, Paschos N, Zampeli F, Xergia S et al (2010) ACL injury and reconstruction: clinical related in vivo biomechanics. Orthop Traumatol Surg Res 96:S119–S128

    Article  CAS  PubMed  Google Scholar 

  54. Ristanis S, Giakas G, Papageorgiou CD, Moraiti T, Stergiou N, Georgoulis AD (2003) The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surg Sports Traumatol Arthrosc 11:360–365

    Article  CAS  PubMed  Google Scholar 

  55. Torres-Claramunt R, Pelfort X, Erquicia J, Gil-Gonzalez S, Gelber PE, Puig L et al (2012) Knee joint infection after ACL reconstruction: prevalence, management and functional outcomes. Knee Surg Sports Traumatol Arthrosc

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Speziali or Giuliano Cerulli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speziali, A., Delcogliano, M., Tei, M. et al. Fixation techniques for the anterior cruciate ligament reconstruction: early follow-up. A systematic review of level I and II therapeutic studies. Musculoskelet Surg 98, 179–187 (2014). https://doi.org/10.1007/s12306-014-0338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-014-0338-8

Keywords

Navigation