Skip to main content
Log in

Germ Cells are Made Semiotically Competent During Evolution

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Germ cells are cross-roads of development and evolution. They define the origin of every new generation and, at the same time, represent the biological end-product of any mature organism. Germ cells are endowed with the following capacities: (1) to store a self-descriptive program, (2) to accumulate a protein-synthesizing machinery (ribosomes), and (3) to incorporate enough nourishment to sustain embryonic development (yolk). To accomplish this goal, germ cells do not simply unfold a pre-determined program or realize a sole instructive role. On the contrary, due to the complexity of their cytoarchitecture and the nature of the soma-to-germ interactions, they are heavily involved in processes of sign recognition and meaningful tissue exploration. At each stage of their inward migration, germ plasma membranes act as semiotic interfaces allowing cells to interact with the surrounding extracellular milieu and experience the compatibility of selected developmental sequences. The question of which signaling pathways are activated at each developmental stage does not result from a strictly predetermined program instructing germ cell stemness. Rather, each developmental sequence is an open-ended semiotic relationship explored and gradually defined during evolution by the context-dependency of specific cell-to-cell interactions. In this way, any structural and functional novelty that has emerged in the course of germ cell interactions may be interpreted as an exaptation fixed in the species genome in response to specific environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, D. A. (2010). Constraints vs Controls. The Open Cybernetics & Systemics Journal, 4, 14–27.

    Article  Google Scholar 

  • Adami, C. (2002). What is complexity? BioEssays, 24, 1085–1094.

    Article  PubMed  Google Scholar 

  • Ahn, S.-M., Simpson, R., & Lee, B. (2010). Genomics and proteomics in stem cell research: the road ahead. Anatomy & Cell Biology, 43, 1–14.

    Article  Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2007). Molecular biology of the cell. New York: Garland Science.

    Google Scholar 

  • Amikura, R., Kashikawa, M., Nakamura, A., & Kobayashi, S. (2001). Presence of mitochondria-type ribosomes outside mitochondria in germ plasm of Drosophila embryos. Proceedings of the National Academy of Sciences of the United States of America, 98, 9133–9138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, E. (2007). A semiotic framework for evolutionary and developmental biology. Biosystems, 90, 389–404.

    Article  PubMed  Google Scholar 

  • Arnellos, A., Spyrou, T., & Darzentas, J. (2010). Towards the naturalization of agency based on an interactivist account of autonomy. New Ideas in Psychology, 28, 296–311.

    Article  Google Scholar 

  • Arnellos, A., Bruni, L. E., El-Hani, C. N., & Collier, J. (2012). Anticipatory functions, digital-analog forms and biosemiotics: Integrating the tools to model information and normativity in autonomous biological agents. Biosemiotics, 5, 331–367.

    Article  Google Scholar 

  • Auletta, G., Ellis, G. F. R., & Jaeger, L. (2008). Top-down causation by information control: from a philosophical problem to a scientific research programme. Journal of the Royal Society Interface, 5, 1159–1172.

    Article  CAS  PubMed Central  Google Scholar 

  • Bang, C., & Cheng, J. (2015). Dynamic interplay of spectrosome and centrosome organelles in asymmetric stem cell divisions. PLoS ONE, 10(4), e0123294.

  • Bateson, G. (1972). Steps to an ecology of mind. New York: Chandler Publishing Company.

    Google Scholar 

  • Ben-Yehudah, A., Easley, C. A., Hermann, B. P., Castro, C., Simerly, C., Orwig, K. E., Mitalipov, S., & Schatten, G. (2010). Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns. Stem Cell Research & Therapy, 1, 24.

    Article  CAS  Google Scholar 

  • Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neurosciences, 8, 599.

    Google Scholar 

  • Bruni, L. E. (2007). Cellular semiotics and signal transduction. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 365–408). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bruni, L. E. (2008). Semiotic freedom: emergence and teleology in biological and cognitive interfaces. The American Journal of Semiotics, 24, 57–73.

    Article  Google Scholar 

  • Buscaglia, M., & Duboule, D. (2002). Developmental biology in Geneva: a three century-long tradition. International Journal of Developmental Biology, 46, 5–13.

    PubMed  Google Scholar 

  • Buszczak, M., & Cooley, L. (2000). Eggs to die for: cell death during Drosophila oogenesis. Cell Death and Differentiation, 7, 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  • Cai, J., Weiss, M. L., & Rao, M. S. (2004). In search of “stemness”. Experimental Hematology, 32(7), 585–598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chisholm, R. H., Hughes, B. D., & Landman, K. A. (2010). Building a morphogen gradient without diffusion in a growing tissue. Plos One, 5, e12857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chuong, C.-M., & Widelitz, R. B. (2009). The river of stem cells. Cell Stem Cell, 4, 100–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Cuevas, M., Lilly, M. A., & Spradling, A. C. (1997). Germline cyst formation in Drosophila. Annual Review of Genetics, 31, 405–428.

    Article  PubMed  Google Scholar 

  • Deacon, W. T. (2012). The incomplete nature. New York: W.W. Norton & Company.

    Google Scholar 

  • Deng, W., & Lin, H. (1997). Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Developmental Biology, 189, 79–94.

    Article  CAS  PubMed  Google Scholar 

  • Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.-Z., & Barkai, N. (2002). Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature, 419, 304–308.

    Article  CAS  PubMed  Google Scholar 

  • El-Hani, C. N., Queiroz, J., Emmeche, C., Torop, P., & Kull, K. (2009). Genes, information, and semiosis. Tartu: Tartu University Press.

    Google Scholar 

  • Enver, T., Pera, M., Peterson, C., & Andrews, P. W. (2009). Stem cell states, fates, and the rules of attraction. Cell Stem Cell, 4, 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Evans, T., Wade, C. M., Chapman, F. A., Johnson, A. D., & Loose, M. (2014). Acquisition of germ plasm accelerates vertebrate evolution. Science, 344, 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Extavour, C. G. (2007). Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integrative and Comparative Biology, 47, 770–785.

    Article  PubMed  Google Scholar 

  • Extavour, C. G., & Akam, M. (2003). Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development, 130, 5869–5884.

    Article  CAS  PubMed  Google Scholar 

  • Extavour, C. G., & Garcia-Bellido, A. (2001). Germ cell selection in genetic mosaics in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 98, 11341–11346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Extavour, C. G., & Wilkins, A. S. (2008). Evolution of the metazoan germline: a unifying hypothesis. Biology of Reproduction, 78, 282. CS43.

    Google Scholar 

  • Gibson, M. C. (2007). Bicoid by the numbers: quantifying a morphogen gradient. Cell, 130, 14–15.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, S. F. (2013). Developmental biology (10th ed.). Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Giorgi, F., & Deri, P. (1976). Cell death in ovarian chambers of Drosophila melanogaster. Journal of Embryology & Experimental Morphology, 35, 521–533.

    CAS  Google Scholar 

  • Goldsby, H. J., Knoester, D. B., Ofria, C., & Kerr, B. (2014). The evolutionary origin of somatic cells under the dirty work hypothesis. PLoS Biology, 12(5), e1001858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregor, T., Mcgregor, A. P., & Wieschaus, E. F. (2008). Shape and function of the bicoid morphogen gradient in dipteran species with different sized embryos. Developmental Biology, 316, 350–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurdon, J. B., & Bourillot, P.-Y. (2001). Morphogen gradient interpretation. Nature, 413, 797–803.

    Article  CAS  PubMed  Google Scholar 

  • Harries-Jones, P. (1995). A recursive vision: ecological understanding and Gregory Bateson. Toronto: University of Toronto Press.

    Google Scholar 

  • Hayashi, Y., Hayashi, M., & Kobayashi, S. (2004). Nanos suppresses somatic cell fate in Drosophila germ line. Proceedings of the National Academy of Sciences of the United States of America, 101, 10338–10342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, F., Wen, Y., Cheung, D., Deng, J., Lu, L. J., Jiao, R., & Ma, J. (2010). Distance measurements via the morphogen gradient of bicoid in Drosophila embryos. BMC Developmental Biology, 10, 80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henning, W. (Ed.). (2013). Early embryonic development of animals. Berlin: Springer.

    Google Scholar 

  • Hoffmeyer, J. (1998). Surfaces inside surfaces. On the origin of agency and life. Cybernetics & Human Knowing, 5, 33–42.

    Google Scholar 

  • Hoffmeyer, J. (2000). The biology of signification. Perspectives in Biology and Medicine, 43, 252–268.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeyer, J. (2006). Genes, development, and semiosis. In E. Neumann-Held & C. Rehmann-Sutter (Eds.), Genes in development. Re-reading the molecular paradigm (pp. 152–174). London: Duke University Press.

    Chapter  Google Scholar 

  • Hoffmeyer, J. (2007). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 149–166). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hoffmeyer, J. (2008). The semiotic niche. Journal of Mediterranean Ecology, 9, 5–30.

    Google Scholar 

  • Hornung, G., Oren, M., & Barkai, N. (2012). Nucleosome organization affects the sensitivity of gene expression to promoter mutations. Molecular Cell, 46, 362–368.

  • Inaba, M., Yuan, H., Salzmann, V., Fuller, M. T., & Yamashita, Y. M. (2010). E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells. PloS One, 5, e12473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions. Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge: MIT Press.

    Google Scholar 

  • Jaeger, J., & Martinez-Arias, A. (2009). Getting the measure of positional information. PLoS Biology, 7(3), e1000081.

  • Jenny, A., Hachet, O., Závorszky, P., Cyrklaff, A., Weston, M. D. J., St Johnston, D., Erdélyi, M., & Ephrussi, A. (2006). A translation-independent role of oskar RNA in early Drosophila oogenesis. Development, 133, 2827–2833.

  • Jin, Z., & Xie, T. (2006). Germline specification: small things have a big role. Current Biology, 16, R966.

    Article  CAS  PubMed  Google Scholar 

  • Johansson, I. (1980). Ceteris paribus clauses, closure clauses and falsifiability. Journal for General Philosophy of Science, 11, 16–22.

    Google Scholar 

  • Johnson, A. D., & Alberio, R. (2015). Primordial germ cells: the first cell lineage or the last cells standing? Development, 142, 2730–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, A. D., Drum, M., Bachvarova, R. F., Masi, T., White, M. E., & Crother, B. I. (2003). Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution. Evolution & Development, 5, 414–431.

    Article  Google Scholar 

  • Kalinka, A. T., Varga, K. M., Gerrard, D. T., Preibisch, S., Corcoran, D. L., Jarrells, J., Ohler, U., Bergman, C. M., & Tomancak, P. (2010). Gene expression divergence recapitulates the developmental hourglass model. Nature, 468, 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Kataoka, K., Yamaguchi, T., Orii, H., Tazaki, A., Watanabe, K., & Mochii, M. (2006). Visualization of the Xenopus primordial germ cells using a green fluorescent protein controlled by cis elements of the 3’ untranslated region of the DEADSouth gene. Mechanisms of Development, 123(10), 746–760.

    Article  CAS  PubMed  Google Scholar 

  • Kauffman, S. A. (1993). Origins of order: self-organization and selection in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Keller, E. F. (2001). The century of the gene. Cambridge: Harvard University Press.

    Google Scholar 

  • Kerszberg, M., & Wolpert, L. (2007). Specifying positional information in the embryo: Looking beyond morphogens. Cell, 130, 205–209.

    Article  CAS  PubMed  Google Scholar 

  • King, R. C. (1970). Ovarian development in Drosophila melanogaster. New York: Academic.

    Google Scholar 

  • King, R. S., & Newmark, P. A. (2012). The cell biology of regeneration. Journal of Cell Biology, 196, 553–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115–132.

    Article  Google Scholar 

  • Kull, K., Emmeche, C., & Hoffmeyer, J. (2011). Why biosemiotics? an introduction to our view on the biology of life itself. In E. Claus & K. Kalevi (Eds.), Towards a semiotic biology. Life is the action of signs (pp. 1–21). London: Imperial College Press (World Scientific Publishing).

    Chapter  Google Scholar 

  • Lander, A. D. (2009). The ‘stem cell’ concept: is it holding us back? Journal of Biology, 8, 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leychkis, Y., Munzer, S. R., & Richardson, J. L. (2009). What is stemness? Studies in History and Philosophy of Biological and Biomedical Sciences, 40, 312–320.

    Article  PubMed  Google Scholar 

  • Loeffler, M., & Roeder, I. (2002). Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models – a conceptual approach. Cells Tissues, Organs, 171, 8–26.

    Article  Google Scholar 

  • Loffler, K. A., & Koopman, P. (2002). Charting the course of ovarian development in vertebrates. International Journal of Developmental Biology, 46, 503–510.

    CAS  PubMed  Google Scholar 

  • Masel, J. (2013). Q&A: evolutionary capacitance. BMC Biology, 11, 103.

    PubMed  PubMed Central  Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge. Boston: Shambhala Publications.

    Google Scholar 

  • Mayr, E. (1988). Toward a new philosophy of biology: observations of an evolutionist. Cambridge: Harvard University Press.

    Google Scholar 

  • Michod, R. E., & Roze, D. (2001). Cooperation and conflict in the evolution of multicellularity. Heredity, 86, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Mikkers, H., & Frisen, J. (2005). Deconstructing stemness. The EMBO Journal, 24, 2715–2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki, K., & Matsui, Y. (2010). Epigenetic profiles in primordial germ cells: global modulation and fine tuning of the epigenome for acquisition of totipotency. Development, Growth & Differentiation, 52, 517–525.

    Article  CAS  Google Scholar 

  • Monod, J. (1971). Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. In A. Alfred (Ed.). New York: Knopf.

  • Müller, H. A. J. (2002). Germ cell migration: as slow as molasses. Current Biology, 12, R612–R614.

    Article  PubMed  Google Scholar 

  • Müller, P., Rogers, K. W., Yu, S. R., Brand, M., & Schier, A. F. (2013). Morphogen transport. Development, 140, 1621–1638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura, A., & Seydoux, G. (2008). Less is more: specification of the germline by transcriptional repression. Development, 135, 3817–3827.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, A., Amikura, R., Mukai, M., Kobayashi, S., & Lasko, P. F. (1996). Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science, 274, 2075–2079.

    Article  CAS  PubMed  Google Scholar 

  • Niki, Y., & Mahowald, A. P. (2003). Ovarian cystocytes can repopulate the embryonic germ line and produce functional gametes. Proceedings of the National Academy of Sciences of the United States of America, 100, 14042–14045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveri, P., Tu, Q., & Davidson, E. H. (2008). Global regulatory logic for specification of an embryonic cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 105, 5955–5962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, L., Chen, S., Weng, C., Call, G., Zhu, D., Tang, H., Zhang, N., & Xie, T. (2007). Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell, 1, 458–469.

    Article  CAS  PubMed  Google Scholar 

  • Park, C., Qian, W., & Zhang, J. (2012). Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Reports, 13, 1123–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrimon, N., Pitsouli, C., & Shilo, B.-Z. (2012). Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harbor Perspectives in Biology, 4, a005975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pickering, J. (2007). Affordances are signs. tripleC, 5, 64–74.

    Google Scholar 

  • Prinz, R. (2009). Cells as semiotic systems. 9th Biosemiotics Gathering, Prague.

  • Renault, A. D., Kunwar, P. S., & Lehmann, R. (2010). Lipid phosphate phosphatase activity regulates dispersal and bilateral sorting of embryonic germ cells in Drosophila. Development, 137, 1815–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar-Ciudad, I., Jernvall, J., & Newman, S. A. (2003). Mechanisms of pattern formation in development and evolution. Development, 130, 2027–2037.

    Article  CAS  PubMed  Google Scholar 

  • Sano, H., Renault, A. D., & Lehmann, R. (2005). Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. Journal of Cell Biology, 171, 675–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scadden, D. T. (2014). Nice neighborhood: emerging concepts of the stem cell niche. Cell, 157, 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaner, C. E., & Kelly, W. G. (2006). Germline chromatin. In (Worm Book ed.), The C. elegans Research Community.

  • Schlosser, G., & Wagner, G. P. (2004). Modularity in development and evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Sharov, A. (1998). Towards the semiotic paradigm in biology. Semiotica, 120, 403–419.

    Google Scholar 

  • Shvartsman, S. Y., Coppey, M., & Berezhkovskii, A. M. (2008). Dynamics of maternal morphogen gradients in the Drosophila embryo. Current Opinions in Genetics & Development, 18(4), 342–347.

  • Sitaramayya, A. (Ed.). (2010). Signal transduction: pathways, mechanisms and diseases. Berlin: Springer–Verlag.

    Google Scholar 

  • Solana, J. (2013).Closing the circle of germline and stem cells: The primordial stem cell hypothesis. EvoDevo, 4, 2.

  • Song, Y., Fee, L., Lee, T. H., & Wharton, R. P. (2007). The molecular chaperone Hsp90 is required for mRNA localization in Drosophila melanogaster Embryos. Genetics, 176, 2213–2222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, J. A., Broihier, H. T., Moore, L. A., & Lehmann, R. (2002). Slow as molasses is required for polarized membrane growth and germ cell migration in Drosophila. Development, 129, 3925–3934.

    CAS  PubMed  Google Scholar 

  • Thomson, T., & Lasko, P. (2005). Tudor and its domains: germ cell formation from a tudor perspective. Cell Research, 15, 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Turner, B. M. (2009). Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B, 364, 3403–3418.

    Article  CAS  Google Scholar 

  • Van Regenmortel, M. H. V. (2004). Reductionism and complexity in molecular biology. EMBO Reports, 5, 1016–1020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varela, F. J. (1979). Principles of biological autonomy. New York: North Holland.

    Google Scholar 

  • Venkatarama, T., Lai, F., Luo, X., Zhou, Y., Newman, K., & King, M. L. (2010). Repression of zygotic gene expression in the Xenopus germline. Development, 137, 651–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent, J.-P. (2003). Membranes, trafficking, and signaling during animal development. Cell, 112, 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: elements of a conceptual framework for Evo-Devo. Journal of Experimental Zoology, 285, 307–325.

    Article  Google Scholar 

  • Wagner, A. (2008). Robustness and evolvability: a paradox resolved. Proceedings of the Royal Society of London B, 275, 91–100.

    Article  Google Scholar 

  • Wakahara, M. (1996). Primordial germ cell development: is the Urodele pattern closer to mammals than to Anurans? International Journal of Developmental Biology, 40, 653–659.

    CAS  PubMed  Google Scholar 

  • Wallace, A. (2004). Biased embryos and evolution. New York: Cambridge University Press.

    Google Scholar 

  • Wang, C., & Lehmann, R. (1991). Nanos is the localized posterior determinant in Drosophila. Cell, 66, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Stary, J. M., Wilhelm, J. E., & Newmark, P. A. (2010). A functional genomic screen in planarians identifies novel regulators of germ cell development. Genes & Development, 24, 2081–2092.

    Article  CAS  Google Scholar 

  • Weissman, I. L. (2015). Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development. Proceedings of the National Academy of Sciences of the United States of America, 112, 8922–8928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman, D. W., & Agrawal, A. A. (2009). What is phenotypic plasticity and why is it important? In D. Whitman & T. N. Ananthakrishnan (Eds.), Phenotypic plasticity of insects. Mechanisms and consequences (pp. 1–63). USA: CRC Press.

    Chapter  Google Scholar 

  • Willis, P.R. (2001). Evolution of the molecular biological interpreter. Complexity International. http://www.complexity.org.au/vol08.

  • Wolpert, L. (1989). Positional information revisited. Development. Supplement, 107, 3–12.

    Google Scholar 

  • Woodward, J. (2003). Making things happen. New York: Oxford University Press.

    Google Scholar 

  • Xie, T. (2013). Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. WIREs Developmental Biology, 2, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, N., Zhang, J., Cheng, Y., & Howard, K. (1996). Identification and genetic analysis of wunen, a gene guiding Drosophila melanogaster germ cell migration. Genetics, 143, 1231–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, N., Zhang, J., Purcell, K. J., Cheng, Y., & Howard, K. (1997). The Drosophila protein Wunen repels migrating germ cells. Nature, 385, 64–67.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, D., & Gerstein, M. B. (2007). The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? Trends in Genetics, 23, 219–224.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Pao, G. M., Satoh, A., Cummings, G., Monaghan, J. R., Harkins, T. T., Bryant, S. V., Randal Voss, S., Gardiner, D. M., & Hunter, T. (2012). Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Developmental Biology, 370, 42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Giorgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgi, F., Bruni, L.E. Germ Cells are Made Semiotically Competent During Evolution. Biosemiotics 9, 31–49 (2016). https://doi.org/10.1007/s12304-016-9258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-016-9258-3

Keywords

Navigation