Skip to main content
Log in

Code Biology – A New Science of Life

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Systems Biology and the Modern Synthesis are recent versions of two classical biological paradigms that are known as structuralism and functionalism, or internalism and externalism. According to functionalism (or externalism), living matter is a fundamentally passive entity that owes its organization to external forces (functions that shape organs) or to an external organizing agent (natural selection). Structuralism (or internalism), is the view that living matter is an intrinsically active entity that is capable of organizing itself from within, with purely internal processes that are based on mathematical principles and physical laws. At the molecular level, the basic mechanism of the Modern Synthesis is molecular copying, the process that leads in the short run to heredity and in the long run to natural selection. The basic mechanism of Systems Biology, instead, is self-assembly, the process by which many supramolecular structures are formed by the spontaneous aggregation of their components. In addition to molecular copying and self-assembly, however, molecular biology has uncovered also a third great mechanism at the heart of life. The existence of the genetic code and of many other organic codes in Nature tells us that molecular coding is a biological reality and we need therefore a framework that accounts for it. This framework is Code biology, the study of the codes of life, a new field of research that brings to light an entirely new dimension of the living world and gives us a completely new understanding of the origin and the evolution of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2007). Molecular biology of the cell (5th ed.). New York: Garland.

    Google Scholar 

  • Andersson, J. O. (2005). Lateral gene transfer in eukaryotes. Cellular and Molecular Life Sciences, 62, 1182–1197.

    Article  CAS  PubMed  Google Scholar 

  • Barash, Y., Calarco, J. A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B. J., & Frey, B. J. (2010). Deciphering the splicing code. Nature, 465, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, M. (1981). The ribotype theory on the origin of life. Journal of Theoretical Biology, 91, 545–601.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, M. (1985). The semantic theory of evolution. London & New York: Harwood Academic Publishers.

    Google Scholar 

  • Barbieri, M. (1998). The organic codes. The basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91, 481–514.

    CAS  Google Scholar 

  • Barbieri, M. (2003). The organic codes. An introduction to semantic biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: a new understanding of life. Naturwissenschaften, 95, 577–599.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, M. (2011). Origin and evolution of the brain. Biosemiotics, 4(3), 369–399.

    Article  Google Scholar 

  • Burks, A. W. (1970). Essays on cellular automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Cech, T. R. (1983). RNA splicing: three themes with variations. Cell, 34, 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Cech, T. R. (1986). RNA as an enzyme. Scientific American, 255, 64–75.

    Article  CAS  PubMed  Google Scholar 

  • Dagan, T., Artzy-Randrup, Y., & Martin, W. (2008). Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proceedings of the National Academy of Science USA, 105, 10039–10044.

    Article  CAS  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Dhir, A., Emanuele Buratti, E., van Santen, M. A., Lührmann, R., & Baralle, F. E. (2010). The intronic splicing code: multiple factors involved in ATM pseudoexon definition. The EMBO Journal, 29, 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2129.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, W. F., & Bapteste, E. (2007). Pattern pluralism and the Tree of Life hypothesis. Proceedings of the National Academy of Sciences USA, 104, 2043–2049.

    Article  CAS  Google Scholar 

  • Eigen, M. (1971). Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58, 465–523.

    Article  CAS  PubMed  Google Scholar 

  • Eigen, M., & Schuster, P. (1977). The hypercycle. A principle of natural self-organization. Naturwissenschaften, 64, 541–565.

    Article  CAS  PubMed  Google Scholar 

  • Flames, N., Pla, R., Gelman, D. M., Rubenstein, J. L. R., Puelles, L., & Marin, O. (2007). Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. The Journal of Neuroscience, 27(36), 9682–9695.

    Article  CAS  PubMed  Google Scholar 

  • Gabius, H.-J. (2000). Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften, 87, 108–121.

    Article  CAS  PubMed  Google Scholar 

  • Gabius, H.-J. (2009). The sugar code. Fundamentals of glycosciences. Wiley-Blackwell.

  • Gamble, M. J., & Freedman, L. P. (2002). A coactivator code for transcription. Trends in Biochemical Sciences, 27(4), 165–167.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, W. (1986). The RNA world. Nature, 319, 618.

    Article  Google Scholar 

  • Gilbert, S. F. (2006). Developmental biology (8th ed.). Sunderland: Sinauer.

    Google Scholar 

  • Guerrier-Takada, C., & Altman, S. (1984). Catalytic activity of an RNA molecule prepared by transcription in vitro. Science, 223, 285–286.

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35, 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.

    Article  CAS  PubMed  Google Scholar 

  • Jessell, T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Genetics, 1, 20–29.

    Article  CAS  Google Scholar 

  • Johannsen, W. (1909). Elemente der exacten Erblichkeitslehre. Jena: Gustav Fisher.

    Google Scholar 

  • Knoll, A. H. (2003). Life on a young planet. The first three billion years of evolution on Earth. Princeton: Princeton University Press.

    Google Scholar 

  • Linde Medina, M. (2010). Two “EvoDevos”. Biological Theory, 5(1), 7–11.

    Article  Google Scholar 

  • Luisi, P. L., & Varela, F. J. (1989). Self-replicating micelles – a chemical version of a minimal autopoietic system. Origins of Life and Evolution of the Biosphere, 19, 633–643.

    Article  CAS  Google Scholar 

  • Marquardt, T., & Pfaff, S. L. (2001). Cracking the transcriptional code for cell specification in the neural tube. Cell, 106, 651–654.

    Article  CAS  PubMed  Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: the realisation of the living. Dordrecht, Holland: D. Reidel Publishing Company. 1980.

    Book  Google Scholar 

  • Maynard Smith, J., and Szathmáry, E. (1995). The major transitions in evolution. Oxford University Press.

  • Mesarovic, M. D. (1968). Systems theory and biology. Berlin: Springer.

    Book  Google Scholar 

  • Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117, 528–529.

    Article  CAS  PubMed  Google Scholar 

  • Monod, J. (1970). Chance and necessity. New York: A. Knopf.

    Google Scholar 

  • Morowitz, H. J. (1992). Beginnings of cellular life. Yale University Press.

  • Nicolelis, M., & Ribeiro, S. (2006). Seeking the neural code. Scientific American, 295, 70–77.

    Article  PubMed  Google Scholar 

  • Niesert, U., Harnasch, D., & Bresch, C. (1981). Origin of Life between Scylla and Charybdis. Journal of Molecular Evolution, 17, 348–353.

    Article  CAS  PubMed  Google Scholar 

  • Nitta, I., Kamada, Y., Noda, H., Ueda, T., & Watanabe, K. (1998). Reconstitution of peptide bond formation. Science, 281, 666–669.

    Article  CAS  PubMed  Google Scholar 

  • Perissi, V., & Rosenfeld, M. G. (2005). Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Molecular Cell Biology, 6, 542–554.

    Article  CAS  Google Scholar 

  • Pertea, M., Mount, S. M., & Salzberg, S. L. (2007). A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC Bioinformatics, 8, 159.

    Article  PubMed  Google Scholar 

  • Readies, C., & Takeichi, M. (1996). Cadherine in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Developmental Biology, 180, 413–423.

    Article  Google Scholar 

  • Rosen, R. (1958). A relational theory of biological systems. Bulletin of Mathematical Biophysics, 20, 245–260.

    Article  Google Scholar 

  • Rosen, R. (1991). life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.

    Google Scholar 

  • Schopf, J. W. (1999). Cradle of life: the discovery of earth’s earliest fossils. Princeton University Press.

  • Segré, D., Ben Eli, D., Deamer, D. W., & Lancet, D. (2001). The lipid world. Origins of Life and Evolution of the Biosphere, 31, 119–145.

    Article  PubMed  Google Scholar 

  • Shapiro, L., & Colman, D. R. (1999). The diversity of Cadherins and implications for a synaptic adhesive code in the CNS. Neuron, 23, 427–430.

    Article  CAS  PubMed  Google Scholar 

  • Spemann, H. (1901). Entwicklungphysiologische Studien am Tritonei I. Wilhelm Roux’ Archiv für Entwicklungsmechanik., 12, 224–264.

    Article  Google Scholar 

  • Spiegelman, S. (1967). An in vitro analysis of a replicating molecule. American Scientist, 55, 3–68.

    Google Scholar 

  • Strahl, B. D., & Allis, D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Szathmáry, E. (1999). Chemes, genes, memes: a revised classification of replicators. Lectures on Mathematics in the Life Sciences., 26, 1–10.

    Google Scholar 

  • Tomkins, M. G. (1975). The metabolic code. Science, 189, 760–763.

    Article  CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1987). Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. Journal of Molecular Biology, 194, 643–652.

    Article  CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1989). The multiple codes of nucleotide sequences. Bulletin of Mathematical Biology, 51, 417–432.

    CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1996). Interfering contexts of regulatory sequence elements. Cabios, 12, 423–429.

    CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1999). Elucidating sequence codes: three codes for evolution. Annals of the New York Academy of Sciences, 870, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Tudge, C. (2000). The variety of life. A survey and a celebration of all the creatures that have ever lived. Oxford and New York: Oxford University Press.

    Google Scholar 

  • Turner, B. M. (2000). Histone acetylation and an epigenetic code. BioEssay, 22, 836–845.

    Article  CAS  Google Scholar 

  • Turner, B. M. (2002). Cellular memory and the Histone code. Cell, 111, 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Verhey, K. J., & Gaertig, J. (2007). The Tubulin code. Cell Cycle, 6(17), 2152–2160.

    Article  CAS  PubMed  Google Scholar 

  • von Bertalanffy, L. (1969). General system theory. New York: George Braziller.

    Google Scholar 

  • von Neumann, J. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Wiener, N. (1948). Cybernetics: or control and communication in the animal and the machine. Paris: Hermann.

    Google Scholar 

  • Woese, C. R. (1987). Bacterial evolution. Microbiology Reviews, 51, 221–271.

    CAS  Google Scholar 

  • Woese, C. R. (2000). Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Sciences USA, 97, 8392–8396.

    Article  CAS  Google Scholar 

  • Woese, C. R. (2002). On the evolution of cells. Proceedings of the National Academy of Sciences USA, 99, 8742–8747.

    Article  CAS  Google Scholar 

  • Wong, J. T. F. (1975). A co-evolution theory of the genetic code. Proceedings of the National Academy of Sciences USA, 72, 1909–1912.

    Article  CAS  Google Scholar 

  • Wong, J. T. F. (1980). Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proceedings of the National Academy of Sciences USA, 77, 1083–1108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am most grateful to all members of the Biosemiotics Board who have sent comments on this paper. I thank in particular Stanley Salthe, Anna Aragno and Joachim De Beule for their very useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Barbieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, M. Code Biology – A New Science of Life. Biosemiotics 5, 411–437 (2012). https://doi.org/10.1007/s12304-012-9147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-012-9147-3

Keywords

Navigation