Skip to main content
Log in

Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Pearl millet (Pennisetum glaucum) is an important cereal of traditional farming systems that has the natural ability to withstand various abiotic stresses. The present study aims at the identification and validation of major differentially expressed genes in response to drought stress in P. glaucum by Suppression Subtractive Hybridization (SSH) analysis. Twenty-two days old seedlings of P. glaucum cultivar PPMI741 were subjected to drought stress by treatment of 30 % Polyethylene glycol for different time periods 30 min (T1), 2 h (T2), 4 h (T3), 8 h (T4), 16 h (T5), 24 h (T6) and 48 h (T7) respectively, monitored by examining the RWC of seedlings. Total RNA was isolated to construct drought responsive subtractive cDNA library through SSH, sequenced to identify the differentially expressed genes in response to drought stress and validated by qRT-PCR.745 ESTs were assembled into a collection of 299 unigenes having 52 contigs and 247 singletons. All 745 ESTs were submitted to ENA-EMBL databases (Accession no. HG516611- HG517355). After analysis, 10 differentially expressed genes were validated namely Abscisic stress ripening protein, Ascorbate peroxidase, Inosine-5′-monophosphate dehydrogenase, Putative beta-1, 3-glucanase, Glyoxalase, Rab7, Aspartic proteinase Oryzasin, DnaJ—like protein and Calmodulin—like protein by qRT-PCR. The identified ESTs reveal a major portion of the stress responsive transcriptome that may prove to be a vent to unravel molecular basis underlying tolerance of pearl millet (Pennisetum glaucum) to drought stress. These genes could be utilized for transgenic breeding or transferred to crop plants through marker assisted selection for the development of better drought resistant cultivars having enhanced adaptability to survive harsh environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  CAS  PubMed  Google Scholar 

  • Almeida CMA, Donato MTS, Amaral DOJ, Lima GSA, Brito GG, Lima MMA, Correia MTS, Silva MV (2013) Differential gene expression in sugarcane induced by salicylic acid and under water deficit conditions. Agric Sci Res 3(1):38–44

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bezançon G, Pham JL, Deu M, Vigouroux Y, Sagnard F, Mariac C, Kapran I, Mamadou A, Gerard B, Ndjeunga J (2009) Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum [L.] R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Evol 56:223–236

    Article  Google Scholar 

  • Caramelo JJ, Iusem ND (2009) When cells lose water: lessons from biophysics and molecular biology. Prog Biophys Mol Biol 99(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Rebeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidise in antioxidant protection. Genet Mol Biol 35(4):1011–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang YC, Ma JF, Matsumoto H (1998) Mechanisms of Al-induced iron chlorosis in wheat (Triticum aestivum): al-inhibited biosynthesis and secretion of phytosiderophore. Physiol Plant 102:9–15

    Article  CAS  Google Scholar 

  • Chauhan H, Khurana N, Tayagi AK, Khurana JP, Khurana P (2011) Characterization of high temperature stress responsive gene in bread wheat (Tritcum aestivum L.) and their various stages of development. Plant Mol Biol 75:35–51

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Covitz PA, Smith LS, Long SR (1998) Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA Library. Plant Physiol 117(4):1325–1332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi M, Scheible WR (2005) Genomewide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devanathan S, Erban A, Perez-Torres R, Kopka J, Christopher A, Makaroff CA (2014) Arabidopsis thaliana Glyoxalase 2–1 is required during abiotic stress but is not essential under normal plant growth. PLoS ONE 9(4):1–12

    Article  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding H, Zhang ZM, Qin FF, Dai LX, Li CJ, Ci DW, Song WW (2014) Isolation and characterization of drought-responsive genes from peanut roots by suppression subtractive hybridization. Electron J Biotechnol 7(6):304–310

    Article  Google Scholar 

  • Dominguez F, Cejudo FJ (1996) Characterization of the endoproteases appearing during wheat grain development. Plant Physiol 112:1211–1217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fatima S, Arshad M, Chaudhari SK, Ali A, Amjad MS, Kausar R (2014) Utilization of synthetics for drought tolerance in bread wheat (Triticum aestivum L.). International J Bioscience 5(1):104–112

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Frankel N, Hasson E, Iusem ND, Rossi MS (2003) Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats. Mol Biol Evol 20:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60(12):3531–3544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubank M, Schatz DG (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 22(25):5640–5648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • ICAR- AICRP (All India Coordinated Research Project on Pearl Millet) (2014) Annual report 2013–2014. http://www.aicrpmip.res.in

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Janska A, Hodek J, Svoboda P, Zamecnık J, Prasil IT (2013) The choice of reference gene set for assessing gene expression in barley (Hordeumvulgare L.) under low temperature and drought stress. Mol Genet Genomics 288:639–649

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Khraiwesh B, Pugalenthi G, Gupta RS, Singh J, Duttamajumder SK, Kapur R (2014) Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane (Saccharum spp.). FEBS Open Bio 4:533–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kholova J, Hash CT, Kakkera A, Kočová M, Vadez V (2014) Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. J Exp Bot 61(2):369–377

    Article  Google Scholar 

  • Leubner-Metzger G, Meins F Jr (1999) Functions and regulation of plant b-1,3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins plants. CRC Press, Boca Raton, pp 49–76

    Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  CAS  PubMed  Google Scholar 

  • Lim CO, Kim HY, Kim MG, Lee SI, Chung WS, Park SH, Hwang I, Cho MJ (1996) Expressed sequence tags of Chinese cabbage flower bud cDNA. Plant Physiol 111:577–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjuna N, Senapathy S, Jadhav DR, Saxena K, Sharma HC, Upadhyaya HD, Rathore A, Varshney R (2011) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130:507–514

    Article  CAS  Google Scholar 

  • Mazel A, Levine A (2002) Induction of glucosyltransferase transcription and activity during superoxide-dependent cell death in Arabidopsis plants. Plant Physiol Biochem 40:133–140

    Article  CAS  Google Scholar 

  • Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK (2007) Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetumglaucum seedlings. Plant Mol Biol 64:713–732

    Article  CAS  PubMed  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–762

    CAS  Google Scholar 

  • Paolacci A, Tanzarella O, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Putney SD, Herlihy WC, Schimmel P (1983) A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing. Nature 302:718–721

    Article  CAS  PubMed  Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and physiology of higher plant 1,3-β-glucanase (callose). In: Stone BA, Clark AE (eds) Chemistry and biology of (1–3)-β-glucans. La Trobe University Press, Melbourne, pp 365–429

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watt DA (2003) Aluminium responsive gene in sugarcane, identification and analysis of expression under oxidative stress. J Bot 54:1163–1175

    Article  CAS  Google Scholar 

  • Xu Y, Tian J, Gianfagna T, Huang B (2009) Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostisstolonifera L.) under heat stress.Plant. Growth Regul 57(3):281–291

    Article  CAS  Google Scholar 

  • Yan X, Dong X, Zhang W, Yin H, Xiao H (2014) Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. PLoS ONE 9(8):1–10

    Google Scholar 

  • Yang C, Chen Y, Jauh GY, Wang C (2005) A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in arabidopsis. Plant Physiol 139(2):836–846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Huang WD, Liu YP, Pan QH (2005) Effects of the temperature acclimation pretreatment on the ultra structure of mesophyll cells in young grape plants (Vitis viniferaL.cv.Jingxiu) under cross-temperature stresses. J Integr Plant Biol 47:959

    Article  Google Scholar 

  • Zhong HY, Chen JW, Li CQ, Chen L, Wu JY (2011) Selection of reliable reference genes for expression studies by reverse transcription quantitative realtime PCR in litchi under different experimental conditions. Plant Cell Rep 30:641–653

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhang L, Li W, Han S, Yang W (2013) Reference gene selection for quantitative. PLoS ONE 8:1–10

    Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Project Director, National Research Centre on Plant Biotechnology (NRCPB) for providing necessary facilities to carry out this research. Dr. Tara Satyavati, Principal Scientist, Division of Genetics, Indian Agricultural Research Institute, New Delhi is thanked for providing Pearl millet seeds. National Phytotron Facility, Indian Agricultural Research Institute is acknowledged for providing controlled glass chambers for carrying out the experiments. The financial grant of senior research fellowship provided ICAR (Indian Council of Agricultural Research) under NICRA (National Initiative on Climate Resilient Agriculture) project is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasdeep Chatrath Padaria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(XLSX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, M., Jayanand & Padaria, J.C. Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes. Physiol Mol Biol Plants 21, 187–196 (2015). https://doi.org/10.1007/s12298-015-0287-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-015-0287-1

Keywords

Navigation