Skip to main content
Log in

Calcium, a Cell Cycle Commander, Drives Colon Cancer Cell Diffpoptosis

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The story of the cell commonder, calcium, reaches into all corners of the cell and controls cell proliferation, differentiation, function, and even death. The calcium-driven eukaryotic revolution is one of the great turning points in the life history, happened about two billion years later when it was converted from a dangerous killer that had to be kept out of cell into the cell master which drives the cell. This review article will take the readers to a tour of tissues chosen to best show the calcium’s many faces (proliferator, differentiator, and killer). The reader will first see calcium and its many helpers, such as the calcium-binding signaler protein calmodulin, directing the key events of the cell cycle. Then the tour will move onto the colon to show calcium driving the proliferation of progenitor cells, then the differentiation and ultimately the programmed death of their progeny. Moreover, the reader will learn of the striking disabling and bypassing of calcium-dependent control mechanisms during carcinogenesis. Finally, recommendations should be taken from the underlying mechanisms through which calcium masters the presistance, progression, and even apoptosis of colorectal cancer cells. Thus, this could be of great interest for designing of chemoprevention protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Potter JD. Colorectal cancer: molecules and populations. J Natl Cancer Inst. 1999;91:916–32.

    Article  CAS  PubMed  Google Scholar 

  2. KInzler KW, Vogelstein B. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2001. p. 583–612.

    Google Scholar 

  3. Lipkin M, Reddy B, Newmark H, Lamprecht SA. Dietary factors in human colorectal cancer. Annu Rev Nutr. 1999;19:545–86.

    Article  CAS  PubMed  Google Scholar 

  4. Milner JA, McDonald SS, Anderson DE, Greenwald P. Molecular targets for nutrients involved with cancer prevention. Nutr Cancer. 2001;41:1–16.

    CAS  PubMed  Google Scholar 

  5. Holt PR, Wolper C, Moss SF, Yang K, Lipkin M. Comparison of calcium supplementation or low-fat dairy foods on epithelial-cell proliferation and differentiation. Nutr Cancer. 2001;41:150–5.

    Article  CAS  PubMed  Google Scholar 

  6. Lipkin M. Preclinical mouse models for cancer chemoprevention studies. Ann NY Acad Sci. 1999;889:14–9.

    Article  CAS  PubMed  Google Scholar 

  7. Risio M. Apoptosis, cell replication, and Western-style diet-induced tumorigenesis in mouse colon. Cancer Res. 1996;56:4910–6.

    CAS  PubMed  Google Scholar 

  8. Santella L. The roles of calcium in the cell cycle: facts and hypotheses. Biochem Biophys Res Commun. 1998;244:317–24.

    Article  CAS  PubMed  Google Scholar 

  9. Whitfield JF. Calcium: cell cycle driver, differentiator and killer. Austin/New York: Landes Bioscience/Chapman & Hall; 1997.

    Google Scholar 

  10. Allbritton NL, Meyer T. Localized calcium spikes and propagating calcium waves. Cell Calcium. 1993;14:691–7.

    Article  CAS  PubMed  Google Scholar 

  11. Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ions and inositol 1,4,5-trisphosphate. Science. 1992;258:1812–5.

    Article  CAS  PubMed  Google Scholar 

  12. Berridge MJ, editor. Microdomains and elemental events in calcium signalling. Cell Calcium 1996;20:95–226.

  13. Taub R. Transcriptional control of liver regeneration. FASEB J. 1996;10:413–27.

    CAS  PubMed  Google Scholar 

  14. Del Sal G, Ruaro EM, Philipson L, Schneider C. The growth arrest-specific gene, gas1, is involved in growth suppression. Cell. 1992;70:595–607.

    Article  PubMed  Google Scholar 

  15. Del Sal G, Ruaro EM, Utrera R, Cole CN, Levine AJ, Schneider C. Gas1-induced growth suppression requires a transactivation-independent p53 function. Mol Cell Biol. 1995;15:7152–60.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54:789–93.

    Google Scholar 

  17. Whitfield JF. Calcium in cell cycles and cancer. Boca Raton: CRC Press; 1995. p. 9–58.

    Google Scholar 

  18. Brini M, Carafoli E. Calcium signaling: a historical account, recent developments and future perspectives. Cell Mol Life Sci. 2000;57:354–70.

    Article  CAS  PubMed  Google Scholar 

  19. De Boni U. The interphase nucleus as a dynamic structure. Int Rev Cytol. 1994;150:149–71.

    Article  PubMed  Google Scholar 

  20. Santella L, Bolshover S. Calcium in the nucleus. In: Carafoli E, Klee C, editors. Calcium as a cellular regulator. New York: Oxford University Press; 1999. p. 487–511.

    Google Scholar 

  21. Fante WJ, Johnson DE, Williams LT. Signalling by tyrosine kinases. Annu Rev Biochem. 1993;62:453–86.

    Article  Google Scholar 

  22. Malarkey K, Belham CM, Paul A, Graham A, McLees A, Scott PH, et al. The regulation of tyrosine kinase signaling pathways by growth factor and G-protein-coupled receptors. Biochem J. 1995;309:361–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buday L. Membrane-targeting of signaling molecules by SH2/SH3 domaincontaining adaptor proteins. Biochim Biophys Acta. 1999;1422:187–204.

    Article  CAS  PubMed  Google Scholar 

  24. Barrett J, Lewis BC, Hoang AT. Cyclin A links c-Myc to adhesion-independent proliferation. J Biol Chem. 1995;270:15923–5.

    Article  CAS  PubMed  Google Scholar 

  25. Morley SJ, Thomas G. Intracellular messengers and the control of protein synthesis. In: Taylor CW, editor. Intracellular messengers. Oxford: Pergamon Press; 1993. p. 447–83.

    Chapter  Google Scholar 

  26. Perez-Terzic C, Pyle J, Jacomi M, Jaconi L, Stehno-Bittel, Clapham, DE. Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science. 1996;273:1875–7.

    Article  CAS  PubMed  Google Scholar 

  27. Stehno-Bittel L, Perez-Terzic C, Clapham DE. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science. 1995;270:1835–8.

    Article  CAS  PubMed  Google Scholar 

  28. Latchman DS. Eukaryotic transcription factors. 3rd ed. London: Academic Press; 1998. p. 1–374.

    Google Scholar 

  29. Kaldis P. The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci (CMLS). 1999;55:284–96.

    Article  CAS  Google Scholar 

  30. Holt PR, Philipova R, Moss S, Schulman H, Hidaka H, Whitaker M. et al. Calcium/calmodulin-dependent phosphorylation and activation of human Cdc25-C at the end of G2/M phase transition in HeLa cells. J Biol Chem. 1999;274:7958–68.

    Article  PubMed  Google Scholar 

  31. Morris TA, De Lorenzo RJ, Tombes RM. CaMK-II inhibition reduces cyclin D1 levels and enhances the association of p27Kip1 with Cdk2 to cause G1 arrest in NIH 3T3 cells. Exp Cell Res. 1998;240:218–27.

    Article  CAS  PubMed  Google Scholar 

  32. Bellamy COC, Malcomson RDG, Harrison DJ, Wyllie AH. Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol. 1995;6:3–16.

    Article  CAS  PubMed  Google Scholar 

  33. Bowen ID, Bowen SM, Jones AH. Mitosis and apoptosis. London: Chapman & Hall; 1998.

    Google Scholar 

  34. Kowalik TF, DeGregori J, Leone G, Jakoi L, Nevins JR. E2F1-specific induction of apoptosis and p53 accumulation which is blocked by Mdm2. Cell Growth Differ. 1998;9:113–8.

    CAS  PubMed  Google Scholar 

  35. Kowalik TF, DeGregori J, Schwarz JK. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virology. 1995;69:2491–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell. 1996;87:733–43.

    Article  CAS  PubMed  Google Scholar 

  37. Rasmussen G, Rasmussen C. Calmodulin-dependent protein kinase II is required for G1/S progression in HeLa cells. Biochem Cell Biol. 1995;73:201–7.

    Article  CAS  PubMed  Google Scholar 

  38. Baitinger C, Alderton J, Poenie M, Schulman H, Steinhardt R. Multifunctional Ca2+/calmodulindependent protein kinase is necessary for nuclear envelope breakdown. J Cell Biol. 1990;111:1763–73.

    Article  CAS  PubMed  Google Scholar 

  39. Twigg J, Patel R, Whitaker M. Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos. Nature. 1988;332:366–9.

    Article  CAS  PubMed  Google Scholar 

  40. Silver RB. Imaging structured space–time patterns of Ca2+ signals: essential information for decisions in cell division. FASEB J. 1999;13:S209–S215.98.

  41. March KL, Wilensky RL, Roeske RW, Hathaway DR. Effects of thiol protease inhibitors on cell cycle and proliferation of vascular smooth muscle cells in culture. Circ Res. 1993;72:413–23.

    Article  CAS  PubMed  Google Scholar 

  42. Schollmeyer JE. Calpain II involvement in mitosis. Science. 1988;240:911–3.

    Article  CAS  PubMed  Google Scholar 

  43. Fields AP, Thompson LJ. The regulation of mitotic nuclear envelope breakdown: a role for multiple lamin kinases. Prog Cell Cycle Res. 1995;1:271–86.

    Article  CAS  PubMed  Google Scholar 

  44. Murray NR, Fields AP. Phosphatidylglycerol is a physiologic activator of nuclear protein kinase C. J Biol Chem. 1998;273:11514–20.

    Article  CAS  PubMed  Google Scholar 

  45. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science. 1996;274:1664–72.

    Article  CAS  PubMed  Google Scholar 

  46. Clarke DJ, Giménez-Abián JF. Checkpoints controlling mitosis. BioEssays. 2000;22:351–63.

    Article  CAS  PubMed  Google Scholar 

  47. Lorca T, Abrieu A, Means A, Doree M. Ca2+ is involved through type II calmodulindependent protein kinase in cyclin degradation and exit from metaphase. Biochim Biophys Acta. 1994;1223:325–32.

    Article  CAS  PubMed  Google Scholar 

  48. Osheroff N, Zechiedrich EL. Calcium-promoted DNA cleavage by eukaryotic topoisomerase II: trapping the covalent enzyme-DNA complex in an active form. Biochemistry. 1987;26:4303–9.

    Article  CAS  PubMed  Google Scholar 

  49. Warburton PE, Earnshaw WC. Untangling the role of DNA topoisomerse II in mitotic chromosome structure and function. BioEssays. 1997;19:97–9.

    Article  CAS  PubMed  Google Scholar 

  50. Sullivan KMC, Busa WB, Wilson KL. Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function. Cell. 1993;73:1411–22.

    Article  CAS  PubMed  Google Scholar 

  51. Bach S, Renehan AG, Potten S. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis. 2000;21:469–76.

    Article  CAS  PubMed  Google Scholar 

  52. Bjerkness M, Cheng H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology. 1999;116:7–14.

    Article  Google Scholar 

  53. Hall PA, Coates PJ, Ansari B, Hopwood D. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci. 1994;107:3569–77.

    CAS  PubMed  Google Scholar 

  54. Buset M, Lipkin M, Winawer S, Swaroop S, Friedman E. Inhibition of human colonic epithelial cell proliferation in vivo and in vitro by calcium. Cancer Res. 1986;46:5426–30.

    CAS  PubMed  Google Scholar 

  55. Friedman EA. A multistage model of human colon carcinoma development integrating cell culture studies with pathology. Cancer Invest. 1985;3:453–61.

    Article  CAS  PubMed  Google Scholar 

  56. Friedman EA. Use of tissue culture of human colonic epithelial cells to study mechanisms of calcium protection. In: Lipkin M, Newmark HL, Kelloff G, editors. Calcium, vitamin D, and the prevention of colon cancer. Boca Raton: CRC Press; 1991. p. 159–68.

    Google Scholar 

  57. Lipkin M, Friedman E, Winawer SJ, Newmark H. Colonic epithelial cell proliferation in responders and non-responders to supplemental dietary calcium. Cancer Res. 1989;49:248–54.

    CAS  PubMed  Google Scholar 

  58. Li H, Kramer PM, Lubet RA, Steele VE, Kelloff GJ, Pereira MA. Effect of calcium on azoxymethane-induced aberrant crypt foci and cell proliferation in the colon of rats. Cancer Lett. 1998;124:39–46.

    Article  CAS  PubMed  Google Scholar 

  59. Brenner BM, Russell N, Albrecht S, Davies RJ. The effect of dietary vitamin D3 on the intracellular calcium gradient in mammalian colonic crypts. Cancer Lett. 1998;127:43–53.

    Article  CAS  PubMed  Google Scholar 

  60. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Revs. 2001;81:240–97.

    Google Scholar 

  61. Butters RR, Chattopadhyay N, Nielsen F, Smith CP, Mithal A, Kifor O, et al. Cloning and characterization of a calcium-sensing receptor from the hypercalcemic New Zealand white rabbit reveals unaltered responsiveness to extracellular calcium. J Bone Miner Res. 1997;12:568–79.

    Article  CAS  PubMed  Google Scholar 

  62. Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, et al. Identification and localization of extracellular Ca2+-sensing receptor in the rat intestine. Am J Physiol. 1998;274:G22–130.

    Google Scholar 

  63. Gama L, Baxendale-Cox LM, Breitwieser GE. Ca2+-sensing receptors in intestinal epithelium. Am J Physiol. 1997;273:C1168–75.

    CAS  PubMed  Google Scholar 

  64. Kállay E, Kifor O, Chattopadhyay N, Brown EM, Bischof MG, Peterlik M, et al. Calcium-dependent c-myc protooncogene expression and proliferation of CACO-2 cells: a role for a luminal extracellular calcium-sensing receptor. Biochem Biophys Res Commun. 1997;232:80–3.

    Article  PubMed  Google Scholar 

  65. Bikle D, Vitamin D. A calciotropic hormone regulating calcium-induced keratinocyte differentiation. J Am Acad Dermatol. 1997;37:S42–55.

    CAS  PubMed  Google Scholar 

  66. Fearon ER. DCC; Is there a connection between tumorigenesis and cell guidance? Biochim Biophys Acta. 1996;1288:M17–23.

    PubMed  Google Scholar 

  67. Fearon ER, Piercall WE. The deleted in colorectal cancer (DCC) gene: a candidate tumor suppressor gene encoding a cell surface protein with similarity to neural cell adhesion molecules. Cancer Surv. 1995;24:3–17.

    CAS  PubMed  Google Scholar 

  68. Livesey FJ. Netrins and netrin receptors. Cell Mol Life Sci (CMLS). 1999;56:62–8.

    Article  CAS  Google Scholar 

  69. Chen YQ, Hsieh JT, Yao F, Fang B, Pong R, Cipriano SC, et al. Induction of apoptosis and G2/M cell cycle arrest by DCC. Oncogene. 1999;18:2747–54.

    Article  CAS  PubMed  Google Scholar 

  70. Song H, Poo M. Signal transduction underlying growth cone guidance by diffusible factors. Curr Opin Neurobiol. 1999;9:355–63.

    Article  CAS  PubMed  Google Scholar 

  71. Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature. 1998;395:801–4.

    Article  CAS  PubMed  Google Scholar 

  72. Torelli G, Venturelli D, Colo A, Zanni C, Selleri L, Moretti L, et al. Expression of c-myb protooncogene and other cell cycle-related genes in normal and neoplastic human colonic mucosa. Cancer Res. 1987;47:5266–9.

    CAS  PubMed  Google Scholar 

  73. Huang F, Sauma S, Yan Z, Friedman E. Colon absorptive epithelial cells lose their proliferative response to TGF-_ as they differentiate. Exp Cell Res. 1995;219:8–14.

    Article  CAS  PubMed  Google Scholar 

  74. Saeki T, Stronberg K, Qi CF, Gullick WJ, Tahara E, Normanno N, et al. Differential immunohistochemical detection of amphiregulin and cripto in human normal colon and colorectal tumors. Cancer Res. 1992;52:3467–73.

    CAS  PubMed  Google Scholar 

  75. Albaugh GP, Iyengar V, Lohani A, Malayeri M, Bala S, Nair PP. Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. Int J Cancer. 1992;52:347–50.

    Article  CAS  PubMed  Google Scholar 

  76. Iyengar V, Albaugh GP, Lohani A, Nair PP. Human stools as a source of viable colonic epithelial cells. FASEB J. 1991;5:2856–9.

    CAS  PubMed  Google Scholar 

  77. Oren M, Prives C. p53: upstream, downstream and offstream. Review of the 8th p53 workshop (Dundee, July 5–9, 1996). Biochim Biophys Acta. 1996;1288:R13–9.

    CAS  PubMed  Google Scholar 

  78. Potten CS. Significance of spontaneous and induced apoptosis in gastrointestinal tract of mice. Cancer Metastasis Rev. 1992;11:179–95.

    Article  CAS  PubMed  Google Scholar 

  79. Merritt AJ, Potten CS, Watson AJ, Loh DY, Nakayama K, Nakayama K, et al. Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci. 1995;108:2261–71.

    CAS  PubMed  Google Scholar 

  80. Fearon ER. Molecular abnormalities in colon and rectal cancer. In: Mendelsohn J, Howley PM, Israel MA, et al., editors. The Molecular Basis of Cancer. Philadelphia: W B Saunders; 1995. p. 340–57.

    Google Scholar 

  81. Shamsuddin AM. Diagnostic Assays for Colon Cancer. Boca Raton: CRC Press; 1992.

    Google Scholar 

  82. Bjerknes M. Expansion of mutant stem cell populations in the human colon. J Theor Biol. 1996;178:381–5.

    Article  CAS  PubMed  Google Scholar 

  83. Fujimitsu Y, Nakanishi H, Inada K, Yamachika T, Ichinose M, Fukami H, et al. Development of aberrant crypt foci involves a fission mechanism as revealed by isolation of aberrant crypts. Jpn J Cancer Res. 1996;87:1199–203.

    Article  CAS  PubMed  Google Scholar 

  84. Polyak K, Hamilton SR, Vogelstein B, Kinzler KW. Early alteration of cell cycle regulated gene expression in colorectal neoplasia. Am J Pathol. 1996;149:381–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Anzano MA, Rieman D, Prichett W, Bowen-Pope DF, Greig R. Growth factor production by human colon carcinoma cell lines. Cancer Res. 1989;49:2898–904.

    CAS  PubMed  Google Scholar 

  86. Shirai H, Ueno E, Osaki M, Tatebe S, Ito H, Kaibara N. Expression of growth factors and their receptors in human early colorectal carcinogenesis: immunohistochemical studies. Anticancer Res. 1995;15:2889–94.

    CAS  PubMed  Google Scholar 

  87. Sizeland AM, Burgess AW. Anti-sense transforming growth factor oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol Biol Cell. 1992;3:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Loewenstein W. The touchstone of life. New York: Oxford University Press; 1999.

    Google Scholar 

  89. Abd-Rabou AA, Zoheir K, Ahmed HH. Potential impact of curcumin and taurine on human hepatoma cells using huh-7 cell line. Clin Biochem. 2012;45:1519–21.

    Article  CAS  PubMed  Google Scholar 

  90. Giovannucci E, Rimm EB, Wolk A, Ascherio A, Stampfer MJ, Colditz GA, et al. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 1998;58:442–7.

    CAS  PubMed  Google Scholar 

  91. Greaves M. Cancer. The Evolutionary Legacy. Oxford: Oxford University Press; 2000.

    Google Scholar 

  92. Lifshitz S, Lamprecht S, Benharroch D, Schwartz B. Apoptosis (programmed cell death) in colonic cells: from normal to transformed stage. Cancer Lett. 2001;163:229–38.

    Article  CAS  PubMed  Google Scholar 

  93. Wilson JW, Nostro MC, Balzi M, Faraoni P, Cianchi F, Becciolini A, et al. Bcl-w expression in colorectal adenocarcinoma. Br J Cancer. 2000;82:178–85.

    Article  CAS  PubMed  Google Scholar 

  94. Peifer M. β-Catenin as oncogene: the smoking gun. Science. 1997;275:1752–3.

    Article  CAS  PubMed  Google Scholar 

  95. Prion Diseases. Available at: http://www-micro.msb.le.ac.uk/335/Prions.html. Accessed 1999.

  96. Meek DW. Multisite phosphorylation and integration of stress signals at p53. Cell Signal. 1998;10:159–66.

    Article  CAS  PubMed  Google Scholar 

  97. Markovitz S. TGF-_ receptors and DNA repair genes, coupled targets in a pathway of human colon carcinogenesis. Biochim Biophys Acta. 2000;1470:M13–20.

    Google Scholar 

  98. Kállay E, Bajna E, Wrba F, Kriwanek S, Peterlik M, Cross HS. Dietary calcium and growth modulation of human colon cancer cells: role of the extracellular calcium-sensing receptor. Cancer Detect Prev. 2000;24:127–36.

    PubMed  Google Scholar 

  99. Scheinin Y, Kállay E, Wrba F. Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant large intestinal mucosa. J Histochem Cytochem. 2000;48:595–601.

    Article  Google Scholar 

  100. Brabletz T, Jung A, Hermann K, Günther K, Hohenberger W, Kirchner T. Nuclear overexpression of the oncoprotein β-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract. 1998;194:701–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Abd-Rabou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Rabou, A.A. Calcium, a Cell Cycle Commander, Drives Colon Cancer Cell Diffpoptosis. Ind J Clin Biochem 32, 9–18 (2017). https://doi.org/10.1007/s12291-016-0562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-016-0562-0

Keywords

Navigation