Skip to main content

Advertisement

Log in

Role of Glucose Derived Reactive Metabolites in Diabetic Nephropathy

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Discovery of differences in the formation of triose phosphate intermediates (TPint) and methylglyoxal (MG) by cell metabolism between mouse strains with identical levels of hyperglycemia suggested prospective importance to diabetes complications. To assess the possible relevance of triose phosphates [glyceraldehyde-3-phosphate and dihydroxyacetone phosphate] in modulating diabetic nephropathy (DN) in type 1 diabetes mellitus (T1DM) patients. A case–control study was conducted among 131 unrelated T1DM with (59 patients) or without nephropathy (72 patients) and 146 non-diabetic controls. Using red blood cells, metabolites of glyoxalase system and triose phosphates were analyzed in deproteinated hemolysate samples. Suitable descriptive statistics was used for different variables. Cross-sectional measures of TPint/mol of glucose in red blood cells were significantly increased in nephropathy cohort relative to diabetic patients with normal albumin excretion/healthy controls (p < 0.0001) and a concomitant increase in MG (R2: 0.3721; p < 0.0001) was observed. Decreased glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity correlated with increased MG levels (R2: 0.0841; p: 0.0259, Table 1) and TPint (R2: 0.0676; p: 0.0467; Table 1) in the DN cohort, but not in either diabetic group with normal albumin excretion or healthy controls. The concentration of d-lactate and activity of glyoxalase I in RBCs were increased markedly in the DN cohort as compared to other studied groups (p < 0.05). The surrogate markers for oxidative stress (thiobarbituric acid reactive substances and glutathione) in DN cohort were all within the range observed in the other studied groups. Diabetic patients who have an elevated levels of intracellular TPint and consequently the chronic exposure to high MG concentrations appears to be susceptible to the development of renal diabetic complications, despite good glycemic control and possibly related to modification of GAPDH by environmental factors or inherent differences.

Table 1 Correlation coefficients for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with various biochemical measurements

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fioretto P, Mauer M. Reversal of diabetic nephropathy: lessons from pancreas transplantation. J Nephrol. 2012;25:13–8.

    Article  PubMed  Google Scholar 

  2. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37:9–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33. Lancet. 1998;352:837–53.

    Article  Google Scholar 

  4. Cherian S, Roy S, Pinheiro A, Roy S. Tight glycemic control regulates fibronectin expression and basement membrane thickening in retinal and glomerular capillaries of diabetic rats. Invest Ophthalmol Vis Sci. 2009;50:943–9.

    Article  PubMed  Google Scholar 

  5. Badal SS, Danesh FR. New insights into molecular mechanisms of diabetic kidney disease. Am J Kidney Dis. 2014;63:S63–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mogensen CE. Definition of diabetic renal disease in insulin dependent diabetes mellitus based on renal function tests. In: Mogensen CE, editor. The kidney and hypertension in diabetes mellitus. Dordrecht: Kluwer Academic Publishers; 1994. p. 1–14.

    Chapter  Google Scholar 

  7. Lachin JM, Genuth S, Nathan DM, Zinman B. Rutledge BN; DCCT/EDIC Research Group. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial revisited. Diabetes. 2008;57:995–1001.

    Article  CAS  PubMed  Google Scholar 

  8. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes. 1991;40:1328–34.

    Article  CAS  PubMed  Google Scholar 

  9. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia. 2010;53:1506–16.

    Article  CAS  PubMed  Google Scholar 

  10. Giacco F, Du X, D’Agati VD, Milne R, Sui G, Geoffrion M, et al. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes. 2014;63:291–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kalapos MP. Where does plasma methylglyoxal originate from. Diabetes Res Clin Pract. 2013;99:260–71.

    Article  CAS  PubMed  Google Scholar 

  12. Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. 52nd World Medical Assembly, Edinburgh, October, 2000.

  13. Kohner EM. The lesions and natural history of diabetic retinopathy, chapter 58. In: Pickup J, Williams G, editors. Textbook of Diabetes. Oxford: Blackwell Scientific Publications; 1991. p. 575–88.

    Google Scholar 

  14. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  PubMed  Google Scholar 

  15. World health organization expert consultation. Appropriate body mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Article  Google Scholar 

  16. Rose GA, Blackburn H. Cardiovascular survey methods. WHO Monograph Series. 1968;56:90–5.

    Google Scholar 

  17. Mauer M, Fioretto P, Woredekal Y, Friedman EA. Diabetic Nephropathy. In: Schrier and Gottschalk editors. Diseases of the Kidney. 1st ed. 2001. p 2083–2128.

  18. Medcalf E, Newman DJ, Gorman EG, Price CP. Rapid, robust method for measuring low concentrations of albumin in urine. Clin Chem. 1990;36:446–9.

    CAS  PubMed  Google Scholar 

  19. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. National kidney disease Education Program Laboratory Working Group. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52:5–18.

    Article  CAS  PubMed  Google Scholar 

  20. Bucher T, Hohorst HJ. Determination with glycerol-1-phosphate dehydrogenase, aldolase and triosephosphate Isomerase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. 7th ed. USA: Verlag Chemie; 2000. p. 246–52.

    Google Scholar 

  21. Beutler E. Red cell metabolism. In: Grune A, Stratton TE, editors. Red cell metabolism—a manual of biochemical methods. Basic techniques and equipment. 3rd ed. New York: Grune & Stratton; 1984.

    Google Scholar 

  22. Drabkin DL. The standardization of haemoglobin measurement. Am J Med Sci. 1948;215:110.

    Article  CAS  PubMed  Google Scholar 

  23. Racker E. Methylglyoxal. In: Colowick SP, Kaplan SP, editors. Methods in enzymology. New York: Academic press; 1957. p. 296–7.

    Google Scholar 

  24. Brandt RB, Siegel SA, Waters MG, Bloch MH. Spectrophotometric assay for d-lactate in plasma. Anal Biochem. 1980;102:39–46.

    Article  CAS  PubMed  Google Scholar 

  25. Satoh K. Serum lipid peroxide in cerebrovascular disorder determined by a new colorimetric method. Clin Chim Acta. 1978;90:37–43.

    Article  CAS  PubMed  Google Scholar 

  26. McLellan AC, Thornalley PJ. Glyoxalase activity in human red fractioned by age. Mech Ageing Dev. 1989;48:63–71.

    Article  CAS  PubMed  Google Scholar 

  27. Byers LD. Glyceraldehyde-3-phosphate dehydrogenase from yeast. Methods Enzymol. 1982;89:326–35.

    Article  CAS  PubMed  Google Scholar 

  28. Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol. 1969;22:158–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Metus P, Ruzzante N, Bonvicini P, Meneghetti M, Zaninotto M, Plebani M. Immunoturbidimetric assay of glycated hemoglobin. J Clin Lab Anal. 1999;13:5–8.

    Article  CAS  PubMed  Google Scholar 

  30. Tegos C, Beutler E. Red cell glycolytic intermediates in diabetic patients. J Lab Clin Med. 1980;96:85–9.

    CAS  PubMed  Google Scholar 

  31. Research DCCT. Group The effect of intensive treatment of diabetes on the development, and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  32. EDIC Study. Sustained effect of intensive treatment of type 1 diabetes mellitus on development, and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003;290:2159–67.

    Article  Google Scholar 

  33. Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, Sommer C, Cleary PA, Lachin JM, Herman WH. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation. 2009;119:2886–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hammes HP, Klinzing I, Wiegand S, Bretzel RG, Cohen AM, Federlin K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Invest Ophthalmol Vis Sci. 1993;34:2092–6.

    CAS  PubMed  Google Scholar 

  35. Kowluru RA, Abbas SN, Odenbach S. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J Diabetes Complic. 2004;18:282–8.

    Article  Google Scholar 

  36. Roy S, Sala R, Cagliero E, Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci. 1990;87:404–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Ren Physiol. 2010;299:F14–25.

    Article  CAS  Google Scholar 

  39. Beisswenger BJ, Drummond KS, Nelson RG, Howell SK, Szwergold BS, Mauer M. Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes. 2005;54:3274–81.

    Article  CAS  PubMed  Google Scholar 

  40. Seneviratne C, Dombi GW, Liu W, Dain JA. In vitro glycation of human serum albumin by dihydroxyacetone and dihydroxyacetone phosphate. Biochem Biophys Res Commun. 2012;417:817–23.

    Article  CAS  PubMed  Google Scholar 

  41. Obrosova I, Cao X, Greene DA, Stevens MJ. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid. Diabetologia. 1998;41:1442–50.

    Article  CAS  PubMed  Google Scholar 

  42. Scionti L, Puxeddu A, Calabrese G, Gatteschi C, De Angelis M, Bolli G, et al. Erythrocyte concentration of glycolytic phosphorylated intermediates and adenosine nucleotides in subjects with diabetes mellitus. Horm Metab Res. 1982;14:233–6.

    Article  CAS  PubMed  Google Scholar 

  43. Beisswenger P, Howell S, Smith K, Szwergold B. Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochim Biophys Acta. 2003;1637:98–106.

    Article  CAS  PubMed  Google Scholar 

  44. Mclellan AC, Thornalley PJ, Benn J, Sonksen PH. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci. 1994;87:21–9.

    Article  CAS  PubMed  Google Scholar 

  45. Seidler NW. GAPDH and intermediary metabolism. Adv Exp Med Biol. 2013;985:37–59.

    Article  PubMed  Google Scholar 

  46. Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy. Diabetes. 2009;58:227–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bouterse SM, Mohammad G, Kowluru RA. Glyceraldehyde-3-phosphate dehydrogenase in retinal microvasculature: implications for the development and progression of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2010;51:1765–72.

    Article  Google Scholar 

  48. Cerdán S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, et al. The redox switch/redox coupling hypothesis. Neurochem Int. 2006;48:523–30.

    Article  PubMed  Google Scholar 

  49. Lee H, Howell S, Sanford R, Beisswenger P. Methylglyoxal can modify GAPDH activity and structure. Ann N Y Acad Sci. 2005;1043:135–45.

    Article  CAS  PubMed  Google Scholar 

  50. Rodacka A, Gerszon J, Puchała M. The biological significance of oxidative modifications of cysteine residues in proteins illustrated with the example of glyceraldehyde-3-phosphate dehydrogenase. Postepy Hig Med Dosw. 2014;68:280–90.

    Article  Google Scholar 

  51. Rabbani N, Thornalley PJ. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes. 2014;63:50–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Narayan Parchwani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parchwani, D.N., Patel, D.D. & Patel, D. Role of Glucose Derived Reactive Metabolites in Diabetic Nephropathy. Ind J Clin Biochem 30, 464–472 (2015). https://doi.org/10.1007/s12291-015-0486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-015-0486-0

Keywords

Navigation