Skip to main content
Log in

Study of the ultrasonic compaction process of composite laminates—part II: advanced numerical simulation

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The ultrasonic compaction might be a suitable technique to obtain well compacted composite laminates in order to implement them in out-of-autoclave automated curing processes. This procedure generates an ultrasonic vibration over the laminate that makes the resin heat and allows the composite plies to be compacted. The numerical study of this heat generation and its distribution within the laminate requires the modelling of the resin and the fibre layers separately, requiring a very fine mesh. Furthermore, the process needs a discretization along the time with very short time steps, in order to model the ultrasonic vibration properly. For these reasons, a fine FEM solution is very costly to compute. Space-time separated representations as the ones considered in Proper Generalized Decomposition (PGD) techniques seem to be an appealing choice for addressing the solution of ultrasonic compaction thermomechanical models. In this work, the formulation and implementation of a PGD solution of a model for the viscous heating and temperature distribution during the compaction of composite layers is presented. The compaction will be studied in two operating modes: it will be studied as a transient problem, assuming that the compactor is still over the laminate and as a steady-state problem, assuming that the compactor is moving along the laminate. Finally, the solution obtained with the transient model will be compared with experimental measurements, showing that the model predicts the behavior of the temperature inside the laminate properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Justo J, Graciani E, París F, Chinesta F, Ávila R (2014) Study of the ultrasonic compaction process of composite laminates—Part I: Process modeling. Int J Mater Form. doi: 10.1007/s12289-014-1194-7

  2. Anandan S, Nagarajan S, Chandrashekhara K, Berkel TR, Pfitzinger D (2013) Cure and process optimization for manufacturing BMI composites using OOA process, International SAMPE Technical Conference, 1334–1346

  3. Mazumdar SK (2002) Composites Manufacturing. Materials, Product, and Process Engineering. CRC Press

  4. Campbell FC (2003) Manufacturing Processes for Advanced Composites. Elsevier

  5. Grewell D, Benatar A, Lee LJ, Zhou G, Lee E (2005) Development of an Ultrasonic Debulking Technique for Composite Laminates Introduction. Annual forum proceedings- American Helicopter Society. Vol 61; Vol 2, 2085–2095

  6. Justo J (2014) Modelling the compaction of composite materials with ultrasonic vibrations. Ph.D. Thesis at the Universidad de Sevilla

  7. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J Non-Newtonian Fluid Mech 144:98–121

    Article  MATH  Google Scholar 

  8. Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Form 7(1):81–92

    Article  Google Scholar 

  9. Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newtonian Fluid Mech 166:578–592

    Article  MATH  Google Scholar 

  10. Prulière E, Chinesta F, Ammar A, Leygue A, Poitou A (2013) On the solution of the heat equation in very thin tapes. Int J Therm Sci 65:148–157

    Article  Google Scholar 

  11. Seebacher S (2008) Contributions to the investigation of in-situ ultrasonic tape lamination of composite thermoset prepregs. Master Thesis at the Private fachhochschule Göttingen

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Justo.

Appendix. Equations for the calculation of R(x), W(y) and S(t)

Appendix. Equations for the calculation of R(x), W(y) and S(t)

The developments used to calculate Eqs. (18), (19) and (20) are presented next.

A.1 Computing R(x) from W(y) and S(t)

When W(y) and S(t) are known, the test function (17) reduces to:

$$ {T}^{*}\left(x,y,t\right)={R}^{*}(x)\cdot W(y)\cdot S(t) $$
(24)

and the weak form (13) writes:

$$ \begin{array}{l}{\displaystyle \underset{\varXi }{\int }{R}^{*}WS\rho {C}_P\left(RW\frac{dS}{dt}\right)d\varXi }+{\displaystyle \underset{\left({\varPhi}_4-{\varPhi}_4^s\right)\times \varGamma }{\int }{R}^{*}W(H)Sh\left(RW(H)S-{T}_{amb}\right) dxdt}+\\ {}+{\displaystyle \underset{\varPhi_4^s\times \varGamma }{\int }{R}^{*}W(H)S{h}_s\left(RW(H)S-{T}_{amb}\right) dxdt}+{\displaystyle \underset{\varXi }{\int }{k}_x\frac{d{R}^{*}}{dx}WS\frac{dR}{dx} WSd\varXi}+\\ {}+{\displaystyle \underset{\varXi }{\int }{k}_y{R}^{*}\frac{dW}{dy}SR\frac{dW}{dy}Sd\varXi }=-{\displaystyle \underset{\varXi }{\int }{R}^{*}WS{\zeta}^md\varXi }-\\ {}-{\displaystyle \underset{\varXi }{\int}\left(\begin{array}{cc}\hfill \frac{d{R}^{*}}{dx}WS\hfill & \hfill {R}^{*}\frac{dW}{dy}S\hfill \end{array}\right){\xi}^md\varXi }-{\displaystyle \underset{\left({\varPhi}_4-{\varPhi}_4^s\right)\times \varGamma }{\int }{R}^{*}W(H)Sh{\psi}^m dxdt}-\\ {}-{\displaystyle \underset{\varPhi_4^s\times \varGamma }{\int }{R}^{*}W(H)S{h}_s{\psi}^m dxdt}\end{array} $$
(25)

where ζ m, ξ m and ψ m are the residuals at enrichment step m:

$$ \begin{array}{l}{\zeta}^m={\displaystyle \sum_{i=1}^{l=m}\rho {C}_P{X}_l(x){Y}_l(y)\frac{d{\varTheta}_l(t)}{dt}}-{\mathbf{Q}}^{visc}\\ {}{\xi}^m=\mathbf{K}{\displaystyle \sum_{l=1}^{l=m}\left(\begin{array}{c}\hfill \frac{d{X}_l(x)}{dx}{Y}_l(y){\varTheta}_l(t)\hfill \\ {}\hfill {X}_l(x)\frac{d{Y}_l(y)}{dy}{\varTheta}_l(t)\hfill \end{array}\right)}\\ {}{\psi}^m={\displaystyle \sum_{l=1}^{l=m}{X}_l(x){Y}_l(H){\varTheta}_l(t)}\end{array} $$
(26)

As all the functions involving coordinates y and t are known, they can be integrated in Ω y  = [0, H] and Γ = [0, t max]. These integrations are presented next. Note that, in order to simplify the number of Eq., (27) includes integrals in R that cannot be integrated at this moment, but will be used later.

$$ \begin{array}{ccc}\hfill {w}_1={\displaystyle \underset{\varOmega_y}{\int }{W}^2 dy\kern2.04em }\hfill & \hfill {s}_1={\displaystyle \underset{\varGamma }{\int }S\frac{dS}{dt}dt\;}\kern0.36em \hfill & \hfill {r}_1={\displaystyle \underset{\varOmega_x}{\int }{R}^2dx}\hfill \\ {}\hfill {w}_2^l={\displaystyle \underset{\varOmega_y}{\int }W{Y}_l dy\kern1.8em }\hfill & \hfill \kern0.36em {s}_{{}_2}^l={\displaystyle \underset{\varGamma }{\int }S\frac{d{\varTheta}_l}{dt}dt}\;\hfill & \hfill \kern0.84em {r}_2^l={\displaystyle \underset{\varOmega_x}{\int }R{X}_ldx}\hfill \\ {}\hfill {w}_3={\displaystyle \underset{\varOmega_y}{\int }Wdy\kern2.4em }\hfill & \hfill \begin{array}{l}{s}_3={\displaystyle \underset{\varGamma }{\int }Sdt\kern1.08em }\\ {}{s}_4={\displaystyle \underset{\varGamma }{\int }{S}^2dt\kern1.08em }\end{array}\hfill & \hfill\;{r}_3={\displaystyle \underset{\varOmega_x}{\int }Rdx\kern0.36em }\hfill \end{array} $$
(27)

then we can define:

$$ {\mathbf{K}}_x=\left(\begin{array}{cc}\hfill {\displaystyle \underset{\varOmega_y}{\int }{k}_x{W}^2 dy}{\displaystyle \underset{\varGamma }{\int }{S}^2dt}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\displaystyle \underset{\varOmega_y}{\int }{k}_z{\left(\frac{dW}{dy}\right)}^2 dy}{\displaystyle \underset{\varGamma }{\int }{S}^2dt}\hfill \end{array}\right) $$
(28)

and

$$ \begin{array}{l}{\xi}_x^m={\displaystyle \sum_{l=1}^{l=m}\left(\left(\begin{array}{cc}\hfill {\displaystyle \underset{\varOmega_y}{\int }{k}_xW{Y}_l dy}{\displaystyle \underset{\varGamma }{\int }S{\varTheta}_ldt}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\displaystyle \underset{\varOmega_y}{\int }{k}_z\frac{dW}{dy}\frac{d{Y}_l}{dy} dy}{\displaystyle \underset{\varGamma }{\int }S{\varTheta}_ldt}\hfill \end{array}\right)\left(\begin{array}{c}\hfill \frac{d{X}_l(x)}{dx}\hfill \\ {}\hfill {X}_l(x)\hfill \end{array}\right)\right)}\\ {}{\psi}_x^m={\displaystyle \sum_{l=1}^{l=m}W(H){Y}_l(H){\displaystyle \underset{\varGamma }{\int }S}{\varTheta}_l(t)dt}\left({X}_l(x)\right)\end{array} $$
(29)

Then, Eq. (25) reduces to

$$ \begin{array}{l}{\displaystyle \underset{\varOmega_x}{\int }{R}^{*}{w}_1{s}_1\rho {C}_PRdx}+{\displaystyle \underset{\varOmega_x-{\varOmega}_s}{\int }{R}^{*}{\left(W(H)\right)}^2{s}_4 hRdx}+{\displaystyle \underset{\varOmega_s}{\int }{R}^{*}{\left(W(H)\right)}^2{s}_4{h}_sRdx}+\\ {}{\displaystyle \underset{\varOmega_x-{\varOmega}_s}{\int }{R}^{*}W(H){s}_3h\left(-{T}_{amb}\right)dx}+{\displaystyle \underset{\varOmega_s}{\int }{R}^{*}W(H){s}_3{h}_s\left(-{T}_{amb}\right)dx}+\\ {}{\displaystyle \underset{\varOmega_x}{\int}\left(\begin{array}{cc}\hfill \frac{d{R}^{*}}{dx}\hfill & \hfill {R}^{*}\hfill \end{array}\right){\mathbf{K}}_x\left(\begin{array}{c}\hfill \frac{dR}{dx}\hfill \\ {}\hfill R\hfill \end{array}\right)d\varXi }=-{\displaystyle \underset{\varOmega_x}{\int }{R}^{*}\left({\displaystyle \sum_{l=1}^{l=m}{w}_2^l{s}_2^l\rho {C}_P{X}_l-{w}_3{s}_3{\mathbf{Q}}^{visc}}\right)dx}-\\ {}{\displaystyle \underset{\varOmega_x}{\int}\left(\begin{array}{cc}\hfill \frac{d{R}^{*}}{dx}\hfill & \hfill {R}^{*}\hfill \end{array}\right){\xi}_x^mdx}-{\displaystyle \underset{\varOmega_x-{\varOmega}_s}{\int }{R}^{*}h{\psi}_x^mdx}-{\displaystyle \underset{\varOmega_s}{\int }{R}^{*}{h}_s{\psi}_x^mdx}\end{array} $$
(30)

A.2 Computing W(y) from R(x) and S(t)

When R(x) and S(t) are known, the test function (17) reduces to:

$$ {T}^{*}\left(x,y,t\right)=R(x)\cdot {W}^{*}(y)\cdot S(t) $$
(31)

and the weak form (13) reads:

$$ \begin{array}{l}{\displaystyle \underset{\varXi }{\int }R{W}^{*}S\rho {C}_P\left(RW\frac{dS}{dt}\right)d\varXi }+{\displaystyle \underset{\left({\varPhi}_4-{\varPhi}_4^s\right)\times \varGamma }{\int }R{W}^{*}(H)Sh\left(RW(H)S-{T}_{amb}\right) dxdt}+\\ {}+{\displaystyle \underset{\varPhi_4^s\times \varGamma }{\int }R{W}^{*}(H)S{h}_s\left(RW(H)S-{T}_{amb}\right) dxdt}+{\displaystyle \underset{\varXi }{\int }{k}_x\frac{dR}{dx}{W}^{*}S\frac{dR}{dx} WSd\varXi}+\\ {}+{\displaystyle \underset{\varXi }{\int }{k}_zR\frac{d{W}^{*}}{dy}SR\frac{dW}{dy}Sd\varXi }=-{\displaystyle \underset{\varXi }{\int }R{W}^{*}S{\zeta}^md\varXi }-\\ {}-{\displaystyle \underset{\varXi }{\int}\left(\begin{array}{cc}\hfill \frac{dR}{dx}{W}^{*}S\hfill & \hfill R\frac{d{W}^{*}}{dy}S\hfill \end{array}\right){\xi}^md\varXi }-{\displaystyle \underset{\left({\varPhi}_4-{\varPhi}_4^s\right)\times \varGamma }{\int }R{W}^{*}(H)Sh{\psi}^m dxdt}-\\ {}-{\displaystyle \underset{\varPhi_4^s\times \varGamma }{\int }R{W}^{*}(H)S{h}_s{\psi}^m dxdt}\end{array} $$
(32)

As all the functions involving the in-plane coordinate x and the time coordinate t are known, they can be integrated in \( {\varOmega}_x=\left[-{\scriptscriptstyle \frac{1}{2}}L,{\scriptscriptstyle \frac{1}{2}}L\right] \) and Γ = [0, t max]. Thus, using the previous notation, we can define:

$$ {\mathbf{K}}_y=\left(\begin{array}{cc}\hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_x{\left(\frac{dR}{dx}\right)}^2dx}{\displaystyle \underset{\varGamma }{\int }{S}^2dt}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_y{R}^2dx}{\displaystyle \underset{\varGamma }{\int }{S}^2dt}\hfill \end{array}\right) $$
(33)

and

$$ \begin{array}{l}{\xi}_y^m={\displaystyle \sum_{l=1}^{l=m}\left(\left(\begin{array}{cc}\hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_x\frac{dR}{dx}\frac{d{X}_l}{dx}dx}{\displaystyle \underset{\varGamma }{\int }S{\varTheta}_ldt}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_yR{X}_ldx}{\displaystyle \underset{\varGamma }{\int }S{\varTheta}_ldt}\hfill \end{array}\right)\left(\begin{array}{c}\hfill {Y}_l(y)\hfill \\ {}\hfill \frac{d{Y}_l(y)}{dy}\hfill \end{array}\right)\right)}\\ {}{\psi}_y^m=h{\displaystyle \sum_{l=1}^{l=m}{\displaystyle \underset{\varOmega_x-{\varOmega}_s}{\int }R}{X}_l(x)dx}{\displaystyle \underset{\varGamma }{\int }S}{\varTheta}_l(t)dt\left({Y}_l(H)\right)\\ {}{\psi}_{ys}^m={h}_s{\displaystyle \sum_{l=1}^{l=m}{\displaystyle \underset{\varOmega_s}{\int }R}{X}_l(x)dx}{\displaystyle \underset{\varGamma }{\int }S}{\varTheta}_l(t)dt\left({Y}_l(H)\right)\end{array} $$
(34)

Then, Eq. (32) reduces to

$$ \begin{array}{l}{\displaystyle \underset{\varOmega_y}{\int }{W}^{*}{r}_1{s}_1\rho {C}_PWdy}+{W}^{*}(H){\left.{r}_1\right|}_{\varOmega_x-{\varOmega}_s}{s}_4hW(H)+{W}^{*}(H){\left.{r}_1\right|}_{\varOmega_s}{s}_4{h}_sW(H)+\\ {}{W}^{*}(H){\left.{r}_3\right|}_{\varOmega_x-{\varOmega}_s}{s}_3h\left(-{T}_{amb}\right)+{W}^{*}(H){\left.{r}_3\right|}_{\varOmega_s}{s}_3{h}_s\left(-{T}_{amb}\right)+\\ {}{\displaystyle \underset{\varOmega_y}{\int}\left(\begin{array}{cc}\hfill {W}^{*}\hfill & \hfill \frac{d{W}^{*}}{dy}\hfill \end{array}\right){\mathbf{K}}_y\left(\begin{array}{c}\hfill W\hfill \\ {}\hfill \frac{dW}{dy}\hfill \end{array}\right) dy}=-{\displaystyle \underset{I}{\int }{W}^{*}\left({\displaystyle \sum_{l=1}^{l=m}{r}_2^l{s}_2^l\rho {C}_P{Y}_l-{r}_3{s}_3{\mathbf{Q}}^{visc}}\right) dy}-\\ {}{\displaystyle \underset{\varOmega_y}{\int}\left(\begin{array}{cc}\hfill {W}^{*}\hfill & \hfill \frac{d{W}^{*}}{dy}\hfill \end{array}\right){\xi}_y^m dy}-{W}^{*}(H)\left({\psi}_y^m+{\psi}_{ys}^m\right)\end{array} $$
(35)

A.3 Computing S(t) from R(x) and W(y)

When R(x) and W(y) are known, those obtained in 4.1 and 4.2, the test function (17) writes:

$$ {T}^{*}\left(x,y,t\right)=R(x)\cdot W(y)\cdot {S}^{*}(t) $$
(36)

and the weak form (13) reduces to:

$$ \begin{array}{l}{\displaystyle \underset{\varXi }{\int }RW{S}^{*}\rho {C}_P\left(RW\frac{dS}{dt}\right)d\varXi }+{\displaystyle \underset{\left({\varPhi}_4-{\varPhi}_4^s\right)\times \varGamma }{\int }RW(H){S}^{*}h\left(RW(H)S-{T}_{amb}\right) dxdt}+\\ {}+{\displaystyle \underset{\varPhi_4^s\times \varGamma }{\int }RW(H){S}^{*}{h}_s\left(RW(H)S-{T}_{amb}\right) dxdt}+{\displaystyle \underset{\varXi }{\int }{k}_x\frac{dR}{dx}W{S}^{*}\frac{dR}{dx} WSd\varXi}+\\ {}+{\displaystyle \underset{\varXi }{\int }{k}_yR\frac{dW}{dy}{S}^{*}R\frac{dW}{dy}Sd\varXi }=-{\displaystyle \underset{\varXi }{\int }RW{S}^{*}{\zeta}^md\varXi }-\\ {}-{\displaystyle \underset{\varXi }{\int}\left(\begin{array}{cc}\hfill \frac{dR}{dx}W{S}^{*}\hfill & \hfill R\frac{dW}{dy}{S}^{*}\hfill \end{array}\right){\xi}^md\varXi }-{\displaystyle \underset{\left({\varPhi}_4-{\varPhi}_4^s\right)\times \varGamma }{\int }RW(H){S}^{*}h{\psi}^m dxdt}-\\ {}-{\displaystyle \underset{\varPhi_4^s\times \varGamma }{\int }RW(H){S}^{*}{h}_s{\psi}^m dxdt}\end{array} $$
(37)

As all the functions involving the in-plane coordinate x and the thickness coordinate y are known, they can be integrated in \( {\varOmega}_x=\left[-{\scriptscriptstyle \frac{1}{2}}L,{\scriptscriptstyle \frac{1}{2}}L\right] \) and Ω y  = [0, H]. Thus, using the previous notation, we can define:

$$ {\mathbf{K}}_t=\left(\begin{array}{cc}\hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_x{\left(\frac{dR}{dx}\right)}^2dx}{\displaystyle \underset{\varOmega_y}{\int }{W}^2 dy}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_y{R}^2dx}{\displaystyle \underset{\varOmega_y}{\int }{\left(\frac{dW}{dy}\right)}^2 dy}\hfill \end{array}\right) $$
(38)

and

$$ \begin{array}{l}{\xi}_t^m={\displaystyle \sum_{l=1}^{l=m}\left(\left(\begin{array}{cc}\hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_x\frac{dR}{dx}\frac{d{X}_l}{dx}dx}{\displaystyle \underset{\varOmega_y}{\int }W{Y}_l dy}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\displaystyle \underset{\varOmega_x}{\int }{k}_zR{X}_ldx}{\displaystyle \underset{\varOmega_y}{\int}\frac{dW}{dy}\frac{d{Y}_l}{dy} dy}\hfill \end{array}\right)\left(\begin{array}{c}\hfill {\varTheta}_l(t)\hfill \\ {}\hfill {\varTheta}_l(t)\hfill \end{array}\right)\right)}\\ {}{\psi}_t^m=h{\displaystyle \sum_{l=1}^{l=m}W(H){Y}_l(H){\displaystyle \underset{\varOmega_x-{\varOmega}_s}{\int }R}{X}_l(x)dx}\left({\varTheta}_l(t)\right)\\ {}{\psi}_{ts}^m={h}_s{\displaystyle \sum_{l=1}^{l=m}W(H){Y}_l(H){\displaystyle \underset{\varOmega_s}{\int }R}{X}_l(x)dx}\left({\varTheta}_l(t)\right)\end{array} $$
(39)

Then, Eq. (37) reduces to

$$ \begin{array}{l}{\displaystyle \underset{\varGamma }{\int }{S}^{*}{r}_1{w}_1\rho {C}_P\frac{dS}{dt}dt}+{\displaystyle \underset{\varGamma }{\int }{S}^{*}{\left.{r}_1\right|}_{\varOmega_x-{\varOmega}_s}{\left(W(H)\right)}^2 hSdt}+{\displaystyle \underset{\varGamma }{\int }{S}^{*}{\left.{r}_1\right|}_{\varOmega_s}{\left(W(H)\right)}^2{h}_sSdt}+\\ {}{\displaystyle \underset{\varGamma }{\int }{S}^{*}{\left.{r}_3\right|}_{\varOmega_x-{\varOmega}_s}W(H)h\left(-{T}_{amb}\right)dt}+{\displaystyle \underset{\varGamma }{\int }{S}^{*}{\left.{r}_3\right|}_{\varOmega_s}W(H){h}_s\left(-{T}_{amb}\right)dt}+\\ {}{\displaystyle \underset{\varGamma }{\int}\left(\begin{array}{cc}\hfill {S}^{*}\hfill & \hfill {S}^{*}\hfill \end{array}\right)\;{\mathbf{K}}_t\left(\begin{array}{c}\hfill S\hfill \\ {}\hfill S\hfill \end{array}\right)dt}=-{\displaystyle \underset{\varGamma }{\int }{S}^{*}\left({\displaystyle \sum_{l=1}^{l=m}{r}_2^l{w}_2^l\rho {C}_P\frac{d{\varTheta}_l}{dt}-{r}_3{w}_3{\mathbf{Q}}^{visc}}\right)dt}-\\ {}{\displaystyle \underset{\varGamma }{\int}\left(\begin{array}{cc}\hfill {S}^{*}\hfill & \hfill {S}^{*}\hfill \end{array}\right){\xi}_t^mdt}-{\displaystyle \underset{\varGamma }{\int }{S}^{*}\left({\psi}_t^m+{\psi}_{ts}^m\right)dt}\end{array} $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Justo, J., Chinesta, F., Graciani, E. et al. Study of the ultrasonic compaction process of composite laminates—part II: advanced numerical simulation. Int J Mater Form 8, 625–637 (2015). https://doi.org/10.1007/s12289-014-1191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1191-x

Keywords

Navigation