Skip to main content
Log in

Numerical simulation of extruded clay paste compression

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The manufacturing process of clay tiles includes a pressing step in which the material undergoes stresses, that may result in the appearance of defects. To understand the phenomena involved, a numerical model of the pressing step was developed. Different tests were performed to determine the different behaviour laws necessary to the numerical simulation (rheological, tribological, damage). A rheological study, based on free compression tests, allowed to charaterize the elasto-visco-plastic behaviour of the extruded clay paste. The constitutive parameters were estimated by inverse analysis of the experimental force displacement curves using a Strategic evolution algorithm coupled with a metamodel. Two damage models, the Latham and Crockoft criterion and the Oyane criterion, were compared to model the cracking. To simulate the crack’s propagation, an element deletion algorithm was used. The friction models of Coulomb and Tresca were investigated to model the global friction between the clay and the tools. The different parameters of the friction law were identified by inverse analysis of an experimental pressing force obtained during a shaping test. The identified model is valided on the case study of an instrumented forming of a tile lug and allows to simulate the shaping of an industrial tile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

E:

Young’s modulus

K0 :

Consistency

m:

Strain rate sensitivity parameter

\( \overline{\mathrm{m}} \) :

Tresca’s friction parameter

μ :

Coulomb’s friction parameter

n:

Strain hardening sensitivity parameter

p:

Hydrostatic pressure

\( {\overline{\upvarepsilon}}_{\mathrm{R}} \) :

Equivalent plastic strain

\( {\overline{\upvarepsilon}}_{\mathrm{V}} \) :

Equivalent viscoplastic strain

\( {\overset{\cdot }{\overline{\upvarepsilon}}}_{\mathrm{V}} \) :

Equivalent viscoplastic strain rate

\( {\overline{\overline{\upvarepsilon}}}_{\mathrm{E}} \) :

Elastic strain tensor

\( \overline{\overline{\mathrm{I}}} \) :

Identity tensor

ν:

Poisson’s ratio

σI, σII, σIII :

Principal stresses

σ0 :

Flow stress

σn :

Normal stress

\( \overline{\upsigma} \) :

Von Mises stress

\( \overline{\overline{\upsigma}} \) :

Stress tensor

τ :

Shear stress

tr ():

Mathematical function Trace

References

  1. Aoudja ZF (1988) Comportement du melange eau-argile vis à vis du procédé d’extrusion (in french), PhD Thesis, INSA de Rennes

  2. Aydin I, Biglari FR, Briscoe BJ, Lawrence CJ, Adams MJ (2000) Physical and numerical modelling of a ram extrusion of paste materials: conical die entry case. Comput Mater Sci 18:141–155

    Article  Google Scholar 

  3. Baran B, Ertürk T, Sarikaya Y, Alemdaroglu T (2001) Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl Clay Sci 20:53–63

    Article  Google Scholar 

  4. Bouszakis KD, Efstathiou K, Paradisiadis G, Tsouknidas A (2008) Experimental and FEM supported investigation of the wet ceramic clay extrusion for the determination of the stress distribution on the applied tools’ surface. J Eur Ceram Soc 28:2117–2127

    Article  Google Scholar 

  5. Cockroft MG, Latham DJ (1972) Ductility and the workability of metals pp 33–39

  6. Djelal C (2001) Designing an perfecting a tribometer for the study of friction of a concentrated clay-water mixture against a metallic surface. Mater Struct 34:51–58

    Article  Google Scholar 

  7. Emmerich M, Giotis A, Ozdemir M, Black T, Giannakoglou K (2002) Meta-model assisted Evolution strategies. Proceedings of the international conference on parallel problem fom nature

  8. Engmann J, Servais C, Burbidge S (2000) Squeeze flow theory and applications to rheometry: a review. J Non-Newtonian Fluid Mech 328(8):601–605

    Google Scholar 

  9. Foudrinier E (2007) Etude numérique et experimentale du procédé d’extrusion de pâtes argileuses (in french),PhD Thesis, Ecole des Mines de Paris

  10. Gagou Y, Padayodi E, Atcholi KE, Mezzane D, Fremy M-A, Saint Gregoire P (2008) Etude comparative du comportement mécanique des matrices de quatre types d’argile

  11. Hoffmeister F, Back T (1990) Genetic algorithms and evolution strategic: similarities and differences. Dortmund university, Bericht, 365

    Google Scholar 

  12. Kocserha I, Gömze LA (2010) Friction properties of clay compounds. Appl Clay Sci 48:425–430

    Article  Google Scholar 

  13. Lee HC, Choi JS, Jung KH, Im YI (2009) Application of element deletion method for numerical analyses of cracking. Process Achiev Mech Mater Eng 154–161

  14. Lian G, Thornton C, Adam MJ (1993) A theoretical study of the liquid bridge forces between two rigide spherical bodies. J Colloid Interface Sci 11:138–147

    Article  Google Scholar 

  15. Oyane M (1972) Criteria of ductile fracture strain pp 1507–1513

  16. Ribeiro MJ, Ferreira JM, Labrincha JA (2005) Plastic behaviour of different ceramic pastes processed by extrusion. Ceram Int 31:515–519

    Article  Google Scholar 

  17. Soulie F (2005) Cohésion par capillarité et comportement mécanique de milieux granulaires humides, PhD Thesis

Download references

Acknowledgments

The present study was supported by the Terreal company. The authors would like to acknowledge this industrial partner for this support and his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Vignes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignes, J., Schmidt, F., Dusserre, G. et al. Numerical simulation of extruded clay paste compression. Int J Mater Form 8, 111–118 (2015). https://doi.org/10.1007/s12289-013-1152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-013-1152-9

Keywords

Navigation