Skip to main content
Log in

Thermo-mechanically coupled FE analysis and sensitivity study of simultaneous hot/cold forging process with local inductive heating and cooling

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The numerical investigation of the production of a stub shaft is presented, where the highly innovative metal forming technology of the simultaneous hot and cold forging is applied in combination with a hardening process performed directly in the closed forging dies after the forging step similar to press hardening of sheet metal. This complex forging process is completely analysed by means of a finite element simulation including the local inductive heating phase of the workpiece as well as the cooling process of the final stub shaft inside the forging dies. All relevant process parameters and the whole simulation model are documented in detail and the simulation results are discussed and validated by means of experimentally measured data, showing good agreement. Parameter studies for various properties of the model are carried out in order to investigate their influence on the geometry and the temperature field development, whereby a deeper understanding of the entire process is gained. Thus, a finite element benchmark analysis is provided for such a complex thermo-mechanically coupled structuring process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Notes

  1. No continuous optical analysis of the inhomogeneous necking of the specimen is available with the current experimental set up. However, the course of the flow curves can be derived from the tension test data (see Fig. 8). For this purpose, the deformed geometry of the specimens is measured after testing in order to determine the uniform elongation und the diameter of the area of fracture. Hence, the true–stress vs. true–strain course can be determined for the range of uniform elongation. Furthermore, in the case of sudden fracture at low temperture levels, the final deformation and the related Cauchy–stress can be calculated for the configuration at fracture. For an estimation of the course of the flow curve between the range of uniform elongation and the point of fracture of the specimen, a physically reasonable interpolation is made for the development of the reduction of the cross section by means of an appropriate mathematical function. In the case at hand, the cosine–function in the first quadrant of the coordinate system is chosen as the interpolant.

  2. The test data is kindly provided by Prof. Scholtes, Institute of Materials Engineering, University of Kassel, Kassel/Germany.

  3. The experimental data is kindly provided by Prof. Steinhoff, Institute of Production Technology and Logistics, Chair of Metal Forming Technology, University of Kassel, Kassel/Germany.

References

  1. British Iron and Steel Research Association (1953) Physical constants of some commercial steels at elevated temperatures. Butterworth, London

    Google Scholar 

  2. Bröcker C, Steinhoff S, Matzenmiller A (2008) Process simulation of stub shaft forging with local heating and cooling—an analysis with EFG. Comput Meth Mater Sci 8(3):144–153

    Google Scholar 

  3. Brokmeier KH (1966) Induktives Schmelzen. W. Girardet, Essen

    Google Scholar 

  4. Chenot JL, Bay F (1998) An overview of numerical modelling techniques. J Mater Process Technol 80–81:8–15

    Article  Google Scholar 

  5. Chenot JL, Chastel Y (1996) Mechanical, thermal and physical coupling methods in FE analysis of metal forming processes. J Mater Process Technol 60:11–18

    Article  Google Scholar 

  6. Dörrenberg Edelstahl GmbH (2008) Data sheet 1.8159. Engelskrichen, Germany, 11.08.2008, www.doerrenberg.de/fileadmin/template/doerrenberg/stahl/DatenblaetterEng/1.8159_en.pdf

  7. EFD Härterei F Düsseldorf GmbH (2006) Grundlagen der Induktionshärtetechnik. Härtereihandbuch, date of version: 07.04.2006, www.efd-haerterei.de/pdf/HH-R01-D06-Induktionstechnik.pdf

  8. Fleck C, Schönbohm A (2004) Entwurf einer flachheitsbasierten Vorsteuerung für die induktive Erwärmung beim Thixoforming. Automatisierungstechnik 52(9):403–410

    Article  Google Scholar 

  9. Gottstein G (1998) Physikalische Grundlagen der Materialkunde. Springer

  10. Groche P, Klöpsch C (2007) Kennwerte der Halbwarm-blechumformung. In: Steinhoff K (ed) Moderne thermomechanische Prozessstrategien in der Stahlumformung. Stahleisen GmbH, Düsseldorf

    Google Scholar 

  11. Guedes CF, César de Sá JMA (2008) A proposal to deal with contact and friction by blending meshfree and finite element methods in forming processes. Int J Mater Form 1:177–188

    Article  Google Scholar 

  12. Hagen M (1990) Werkstoffmodelle zur thermomechanischen Behandlung des Stahls 50 CrV 4. PhD Thesis, RWTH Aachen, Aachen/Germany

  13. Hallquist JO (2005) LS–DYNA Theory manual. Livermore Software Technology Corporation (LSTC), Livermore, Kalifornien

    Google Scholar 

  14. Hänsel A (1998) Nichtisothermes Werkstoffmodell für die FE–Simulation von Blechumformprozessen mit metastabilen austenitischen CrNi–Stählen. Fortschritt–Berichte VDI, Reihe 2 Nr. 491, Düsseldorf/Germany, VDI Verlag

  15. Hartmann S, Kuhl D, Quint KJ (2009) Time-adaptive computation of finite strain thermoviscoplastic structures. In: Steinhoff K, Maier H, Biermann D (eds) Functionally graded materials in industrial mass production. Wissenschaftliche Scripten, Auerbach

    Google Scholar 

  16. Hein P, Kefferstein R, Wilsius J (2007) Stand und Entwicklungstrends bei der Warmumformung von USIBOR 1500 P. In: Steinhoff K (ed) Moderne thermomechanische Prozessstrategien in der Stahlumformung. Stahleisen GmbH, Düsseldorf

    Google Scholar 

  17. Hünicke UD, Möller S (2003) Auswertung der statischen Magnetisierungskurve zur Kontrolle von Gefüge- und Behandlungszuständen bei Stählen. In: Proceedings of DGZfP–annual conference meeting, Mainz

  18. Matzenmiller A, Bröcker C, Gerlach S (2009) FE–analysis of simultaneous hot/cold forging. Steel Res Int 80(2):130–136

    Google Scholar 

  19. Merrygold E, Osman FH (2001) Forging of complex geometries with differential heating. J Mater Process Technol 80(1):179–183

    Google Scholar 

  20. Müssig B (2002) Temperierung von Schmiedewerkzeugen zur Erhöhung der Bauteilgenauigkeit. PhD Thesis in Mechanical Engineering, University of Hannover, Hannover/Germany

  21. Okman O, Özmen M et al (2007) Free forming of locally heated specimens. Int J Mach Tools Manuf 47:1197–1205

    Article  Google Scholar 

  22. Quak W, van den Boogaard AH, Huétink J (2009) Meshless methods and forming processes. Int J Mater Form 2(Supplement 1):585–588

    Article  Google Scholar 

  23. Richter F (1983) Physikalische Eigenschaften von Stählen und ihre Temperaturabhängigkeit. Stahleisen–Sonderberichte Heft 10. Stahleisen m. b. H., Düsseldorf

    Google Scholar 

  24. Schlemmer KL, Osman FH (2005) Differential heating forming of solid and bi-metallic hollow parts. J Mater Process Technol 162–163:564–569

    Article  Google Scholar 

  25. Steinhoff K, Weidig U et al (2005) Innovative flexible metal forming processes based on hybrid thermo–mechanical interaction. Steel Res Int 76(2–3):154–159

    Google Scholar 

  26. Stopp R, Schaller L et al (2007) Warmblechumforme in der Automobil–Serienfertigung—Status, Trends, Potentiale. In: Geiger M, Merklein M (eds) Tagungsband zum 2. Erlanger Workshop Warmblechumformung, Meisenbach, Bamberg

    Google Scholar 

  27. Weidig U, Kayatürk K et al (2000) Combination of cold and hot forging in a single forming step: production technique, workpiece geometries, material characteristics. In: Proceedings of the 14th International Forgemasters Meeting, Wiesbaden/Germany, September 3–8, pp 199–206

  28. Weidig U, Steinhoff K et al (2001) Simultaneous cold and hot forging in a single step. Wire 51(2):58–60

    Google Scholar 

  29. Weidig U, Hübner K, Steinhoff K (2008) Bulk steel products with functionally graded properties produced by differential thermo-mechanical processing. Steel Res Int 79(1):59–65

    Google Scholar 

  30. Yoshihara S, MacDonald BJ et al (2004) Optimisation of magnesium alloy stamping with local heating and cooling using the finite element method. J Mater Process Technol 153–154:319–322

    Article  Google Scholar 

Download references

Acknowledgements

This publication is based on research activities of the collaborative research centre SFB/TR TRR 30, kindly supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Matzenmiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzenmiller, A., Bröcker, C. Thermo-mechanically coupled FE analysis and sensitivity study of simultaneous hot/cold forging process with local inductive heating and cooling. Int J Mater Form 5, 275–300 (2012). https://doi.org/10.1007/s12289-011-1042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-011-1042-y

Keywords

Navigation