Skip to main content

Advertisement

Log in

Therapeutic Drug Monitoring and Genotypic Screening in the Clinical Use of Voriconazole

  • Pharmacology and Pharmacodynamics of Antifungal Agents (P Gubbins, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Voriconazole is an antifungal triazole that is the first-line agent for treatment of invasive aspergillosis. It is metabolized by CYP2C19, CYP2C9, and CYP3A4 and demonstrates wide interpatient variability in serum concentrations. Polymorphisms in CYP2C19 contribute to variability in voriconazole pharmacokinetics. Here, evidence is examined for the use of voriconazole therapeutic drug monitoring (TDM) and the role of CYP2C19 genotyping in voriconazole dosing. The majority of studies exploring the impact of voriconazole TDM on efficacy and safety have found TDM to be beneficial. However, most of these studies are observational, with only one being a randomized controlled trial. High-volume multicenter randomized controlled trials of TDM are currently not available to support definitive guidelines. There is a significant relationship in healthy volunteers between CYP2C19 genotype and voriconazole pharmacokinetics, but this association is markedly less visible in actual patients. While CYP2C19 genotype data may explain variability of voriconazole serum levels, they alone are not sufficient to guide initial dosing. The timeliness of availability of CYP2C19 genotype data in treatment of individual patients also remains challenging. Additional studies are needed before implementation of CYP2C19 genotyping for voriconazole dosing into routine clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Product information. Vfend (voriconazole). New York: Pfizer; 2014.

  2. Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:327–60.

    Article  CAS  PubMed  Google Scholar 

  3. Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35.

    Article  CAS  PubMed  Google Scholar 

  4. Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45:649–63.

    Article  CAS  PubMed  Google Scholar 

  5. Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother. 2009;53:24–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Geist MJ, Egerer G, Burhenne J, Mikus G. Safety of voriconazole in a patient with CYP2C9*2/CYP2C9*2 genotype. Antimicrob Agents Chemother. 2006;50:3227–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Weiss J, Ten Hoevel MM, Burhenne J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49:196–204.

    Article  CAS  PubMed  Google Scholar 

  8. Lee S, Kim BH, Nam WS, et al. Effect of CYP2C19 polymorphism on the pharmacokinetics of voriconazole after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2012;52:195–203. A healthy volunteer study in adults that characterized the pharmacokinetics of single (oral and intravenous) and multiple dose (oral) voriconazole in patients with CYP2C19 polymorphisms.

    Article  CAS  PubMed  Google Scholar 

  9. Purkins L, Wood N, Ghahramani P, Greenhalgh K, Allen MJ, Kleinermans D. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother. 2002;46:2546–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364:1144–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Evans WE, McLeod HL. Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–49.

    Article  CAS  PubMed  Google Scholar 

  12. Owusu Obeng A, Egelund EF, Alsultan A, Peloquin CA, Johnson JA. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy. 2014;34:703–18. A recent and extensive review describing the pharmacogenomics of voriconazole.

    Article  CAS  PubMed  Google Scholar 

  13. http://www.pharmgkb.org/drug/PA10233#tabview=tab0&subtab=31. Accessed 4 Feb 2015.

  14. Chau MM, Kong DC, van Hal SJ, et al. Consensus guidelines for optimizing antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy. Intern Med J. 2014;44:1364–88.

    Article  CAS  PubMed  Google Scholar 

  15. Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41:913–58.

    Article  CAS  PubMed  Google Scholar 

  16. Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25:193–200.

    Article  CAS  PubMed  Google Scholar 

  17. Hirota T, Eguchi S, Ieri I. Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab Pharmacokinet. 2013;28:28–37.

    Article  CAS  PubMed  Google Scholar 

  18. http://www.cypalleles.ki.se/cyp2c19.htm. Accessed 10 Jan 2015.

  19. Frye RF. In: McLeod HL, DeVane CL, Haga SB, editors. Pharmacogenetics of oxidative drug metabolism and its clinical applications in pharmacogenomics: applications to patient care. Lenexa: American College of Clinical Pharmacy; 2009. p. 32–53.

    Google Scholar 

  20. Bertisson L. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet. 1995;29:192–209.

    Article  Google Scholar 

  21. Scott SA, Sangkuhl K, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94:317–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Strom CM, Goos D, Crossley B, et al. Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet Med. 2012;14:95–100.

    Article  CAS  PubMed  Google Scholar 

  23. Sugimoto K, Uno T, Yamazaki H, Tateishi T. Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol. 2008;65:437–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Andes D, Lepak A. Editorial commentary: antifungal therapeutic drug monitoring progress: getting it right the first time. Clin Infect Dis. 2012;55:391–3.

    Article  PubMed  Google Scholar 

  25. Sim SC, Risinger C, Dahl ML, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79:103–13.

    Article  CAS  PubMed  Google Scholar 

  26. Johnston A. The pharmacokinetics of voriconazole. Br J Clin Pharmacol. 2003;56 Suppl 1:1.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Trifilio S, Pennick G, Pi J, et al. Monitoring plasma voriconazole levels may be necessary to avoid subtherapeutic levels in hematopoietic stem cell transplant recipients. Cancer. 2007;109:1532–5.

    Article  CAS  PubMed  Google Scholar 

  28. Bruggemann RJ, Donnelly JP, Aarnoutse RE, et al. Therapeutic drug monitoring of voriconazole. Ther Drug Monit. 2008;30:403–11.

    Article  PubMed  Google Scholar 

  29. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–11.

    Article  CAS  PubMed  Google Scholar 

  30. Trifilio SM, Yarnold PR, Scheetz MH, Pi J, Pennick G, Mehta J. Serial plasma voriconazole concentrations after allogeneic hematopoietic stem cell transplantation. Antimicrob Agents Chemother. 2009;53:1793–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Racil Z, Winterova J, Kouba M, et al. Monitoring trough voriconazole plasma concentrations in haematological patients: real life multicentre experience. Mycoses. 2012;55:483–92.

    Article  CAS  PubMed  Google Scholar 

  32. Park WB, Kim NH, Kim KH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55:1080–7. Randomized, assessor-blinded, controlled, single center trial evaluating clinical utility of therapeutic drug monitoring for voriconazole in invasive fungal infections found reduced drug discontinuation due to adverse events and improved treatment response.

    Article  CAS  PubMed  Google Scholar 

  33. Denning DW, Ribaud P, Milpied N, et al. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis. 2002;34:563–71.

    Article  CAS  PubMed  Google Scholar 

  34. Goodwin ML, Drew RH. Antifungal serum concentration monitoring: an update. J Antimicrob Chemother. 2008;61:17–25.

    Article  CAS  PubMed  Google Scholar 

  35. Andes D, Marchillo K, Stamstad T, Conklin R. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:3165–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55:4782–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Howard A, Hoffman J, Sheth A. Clinical application of voriconazole concentrations in the treatment of invasive aspergillosis. Ann Pharmacother. 2008;42:1859–64.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003;36:630–7.

    Article  CAS  PubMed  Google Scholar 

  39. Pfaller MA, Diekema DJ, Rex JH, et al. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J Clin Microbiol. 2006;44:819–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Smith J, Safdar N, Knasinski V, et al. Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother. 2006;50:1570–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ueda K, Nannya Y, Kumano K, et al. Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. Int J Hematol. 2009;89:592–9.

    Article  CAS  PubMed  Google Scholar 

  42. Davies-Vorbrodt S, Ito JI, Tegtmeier BR, Dadwal SS, Kriengkauykiat J. Voriconazole serum concentrations in obese and overweight immunocompromised patients: a retrospective review. Pharmacotherapy. 2013;33:22–30.

    Article  CAS  PubMed  Google Scholar 

  43. Hamada Y, Seto Y, Yago K, Kuroyama M. Investigation and threshold of optimum blood concentration of voriconazole: a descriptive statistical meta-analysis. J Infect Chemother. 2012;18:501–7.

    Article  CAS  PubMed  Google Scholar 

  44. Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55:381–90. A population-pharmacokinetics analysis involving 55 patients with invasive mycoses suggested that a therapeutic range for voriconazole plasma concentrations between 1.5 and 4.5 mg/L provided a >85% probability of response and <15% probability of neurotoxicity.

    Article  CAS  PubMed  Google Scholar 

  45. Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56:4793–9. In a multicenter retrospective study of the relationships between voriconazole concentrations and clinical outcomes and adverse events in 201 patients, treatment success was significantly greater at voriconazole concentrations ≥1.7 mcg/mL (p < 0.01) and neurotoxicity occurred more frequently at concentrations >5 mcg/mL (p < 0.01).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chu HY, Jain R, Xie H, Pottinger P, Fredricks DN. Voriconazole therapeutic drug monitoring: retrospective cohort study of the relationship to clinical outcomes and adverse events. BMC Infect Dis. 2013;13:105.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N. Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol. 2006;46:235–43.

    Article  CAS  PubMed  Google Scholar 

  48. Imhof A, Schaer DJ, Schanz U, Schwarz U. Neurological adverse events to voriconazole: evidence for therapeutic drug monitoring. Swiss Med Wkly. 2006;136:739–42.

    CAS  PubMed  Google Scholar 

  49. Suzuki Y, Tokimatsu I, Sato Y, et al. Association of sustained high plasma trough concentration of voriconazole with the incidence of hepatotoxicity. Clin Chim Acta. 2013;424:119–22.

    Article  CAS  PubMed  Google Scholar 

  50. Zonios D, Yamazaki H, Murayama N, et al. Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis. 2014;209:1941–8.

    Article  CAS  PubMed  Google Scholar 

  51. Miyakis S, van Hal SJ, Ray J, Marriott D. Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect. 2010;16:927–33.

    Article  CAS  PubMed  Google Scholar 

  52. Gomez-Lopez A, Cendejas-Bueno E, Cuesta I, et al. Voriconazole serum levels measured by high-performance liquid chromatography: a monocentric study in treated patients. Med Mycol. 2012;50:439–45.

    Article  CAS  PubMed  Google Scholar 

  53. Walsh TJ, Karlsson MO, Driscoll T, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother. 2004;48:2166–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Chen J, Chan C, Colantonio D, Seto W. Therapeutic drug monitoring of voriconazole in children. Ther Drug Monit. 2012;34:77–84.

    Article  CAS  PubMed  Google Scholar 

  55. Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53:935–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Walsh TJ, Driscoll T, Milligan PA, et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob Agents Chemother. 2010;54:4116–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Alffenaar JW, Doedens RA, Groninger E, Kosterink JG. High-dose voriconazole in a critically ill pediatric patient with neuroblastoma. Pediatr Infect Dis J. 2008;27:189–90.

    PubMed  Google Scholar 

  58. Neely M, Rushing T, Kovacs A, Jelliffe R, Hoffman J. Voriconazole pharmacokinetics and pharmacodynamics in children. Clin Infect Dis. 2010;50:27–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Choi SH, Lee SY, Hwang JY, et al. Importance of voriconazole therapeutic drug monitoring in pediatric cancer patients with invasive aspergillosis. Pediatr Blood Cancer. 2013;60:82–7.

    Article  CAS  PubMed  Google Scholar 

  60. Soler-Palacin P, Frick MA, Martin-Nalda A, et al. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: a prospective study. J Antimicrob Chemother. 2012;67:700–6.

    Article  CAS  PubMed  Google Scholar 

  61. Mitsani D, Nguyen MH, Shields RK, et al. Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: factors impacting levels of and associations between serum troughs, efficacy, and toxicity. Antimicrob Agents Chemother. 2012;56:2371–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Trifilio S, Singhal S, Williams S, et al. Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant. 2007;40:451–6.

    Article  CAS  PubMed  Google Scholar 

  63. Pieper S, Kolve H, Gumbinger HG, Goletz G, Wurthwein G, Groll AH. Monitoring of voriconazole plasma concentrations in immunocompromised paediatric patients. J Antimicrob Chemother. 2012;67:2717–24.

    Article  CAS  PubMed  Google Scholar 

  64. Barreto JN, Beach CL, Wolf RC, et al. The incidence of invasive fungal infections in neutropenic patients with acute leukemia and myelodysplastic syndromes receiving primary antifungal prophylaxis with voriconazole. Am J Hematol. 2013;88:283–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lee YJ, Lee SO, Choi SH, et al. Initial voriconazole trough blood levels and clinical outcomes of invasive aspergillosis in patients with hematologic malignancies. Med Mycol. 2013;51:324–30.

    Article  CAS  PubMed  Google Scholar 

  66. Hagiwara E, Shiihara J, Matsushima A, et al. Usefulness of monitoring plasma voriconazole concentration in patients with chronic necrotizing pulmonary aspergillosis. Nihon Kokyuki Gakkai Zasshi. 2009;47:93–7.

    PubMed  Google Scholar 

  67. Okuda T, Okuda A, Watanabe N, Takao M, Takayanagi K. Retrospective serological tests for determining the optimal blood concentration of voriconazole for treating fungal infection. Yakugaku Zasshi. 2008;128:1811–8.

    Article  CAS  PubMed  Google Scholar 

  68. Boucher HW, Groll AH, Chiou CC, Walsh TJ. Newer systemic antifungal agents: pharmacokinetics, safety and efficacy. Drugs. 2004;64:1997–2020.

    Article  CAS  PubMed  Google Scholar 

  69. Zonios DI, Gea-Banacloche J, Childs R, Bennett JE. Hallucinations during voriconazole therapy. Clin Infect Dis. 2008;47:e7–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Matsumoto K, Ikawa K, Abematsu K, et al. Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents. 2009;34:91–4.

    Article  CAS  PubMed  Google Scholar 

  71. Trifilio S, Ortiz R, Pennick G, et al. Voriconazole therapeutic drug monitoring in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2005;35:509–13.

    Article  CAS  PubMed  Google Scholar 

  72. Potoski BA, Brown J. The safety of voriconazole. Clin Infect Dis. 2002;35:1273–5.

    Article  PubMed  Google Scholar 

  73. Lutsar I, Hodges MR, Tomaszewski K, Troke PF, Wood ND. Safety of voriconazole and dose individualization. Clin Infect Dis. 2003;36:1087–8.

    Article  PubMed  Google Scholar 

  74. Walsh TJ, Pappas P, Winston DJ, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med. 2002;346:225–34.

    Article  CAS  PubMed  Google Scholar 

  75. Ikeda Y, Umemura K, Kondo K, Sekiguchi K, Miyoshi S, Nakashima M. Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther. 2004;75:587–8.

    Article  CAS  PubMed  Google Scholar 

  76. Mikus G, Schöwel V, Drzewinska M, et al. Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther. 2006;80:126–35.

    Article  CAS  PubMed  Google Scholar 

  77. Wang G, Lei HP, Li Z, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65:281–5.

    Article  CAS  PubMed  Google Scholar 

  78. Scholz I, Oberwittler H, Riedel KD, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68:906–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Shi HY, Yan J, Zhu WH, et al. Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur J Clin Pharmacol. 2010;66:1131–6.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Lei HP, Wang G, Wang LS, et al. Lack of effect of Ginkgo biloba on voriconazole pharmacokinetics in Chinese volunteers identified as CYP2C19 poor and extensive metabolizers. Ann Pharmacother. 2009;43:726–31.

    Article  CAS  PubMed  Google Scholar 

  81. Dolton MJ, McLachlan AJ. Clinical importance of the CYP2C19*17 variant allele for voriconazole. Br J Clin Pharmacol. 2011;71:137–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Levin MD, den Hollander JG, van der Holt B, et al. Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms. J Antimicrob Chemother. 2007;60:1104–7.

    Article  CAS  PubMed  Google Scholar 

  83. Berge M, Guillemain R, Trégouet DA, et al. Effect of cytochrome P450 2C19 genotype on voriconazole exposure in cystic fibrosis lung transplant patients. Eur J Clin Pharmacol. 2011;67:253–60.

    Article  CAS  PubMed  Google Scholar 

  84. Kim SH, Yim DS, Choi SM, et al. Voriconazole-related severe adverse events: clinical application of therapeutic drug monitoring in Korean patients. Int J Infect Dis. 2011;15:e753–8.

    Article  CAS  PubMed  Google Scholar 

  85. Narita A, Muramatsu H, Sakaguchi H, et al. Correlation of CYP2C19 phenotype with voriconazole plasma concentration in children. J Pediatr Hematol Oncol. 2013;35:e219–23.

    Article  CAS  PubMed  Google Scholar 

  86. Kim SH, Lee DG, Kwon JC, et al. Clinical impact of cytochrome P450 2C19 genotype on the treatment of invasive aspergillosis under routine therapeutic drug monitoring of voriconazole in a Korean population. Infect Chemother. 2013;45:406–14. A prospective observational study found with routine therapeutic drug monitoring there was no significant relationship between CYP2C19 genotype and outcome or toxicity with voriconazole in patients with invasive aspergillosis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Wang T, Zhu H, Sun J, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents. 2014;44:436–42.

    Article  CAS  PubMed  Google Scholar 

  88. Hicks JK, Crews KR, Flynn P, et al. Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes. Pharmacogenomics. 2014;15:1065–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Driscoll TA, Frangoul H, Nemecek ER, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised adolescents and healthy adults. Antimicrob Agents Chemother. 2011;55:5780–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Hassan A, Burhenne J, Riedel KD, et al. Modulators of very low voriconazole concentrations in routine therapeutic drug monitoring. Ther Drug Monit. 2011;33:86–93.

    Article  CAS  PubMed  Google Scholar 

  91. Moriyama B, Jarosinski P, Figg WD, et al. Pharmacokinetics of intravenous voriconazole in obese patients: implications of CYP2C19 homozygous poor metabolizer genotype. Pharmacotherapy. 2013;33:e19–22.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Mori M, Kobayashi R, Kato K, et al. Pharmacokinetics and safety of voriconazole intravenous-to-oral switch regimens in immunocompromised japanese pediatric patients. Antimicrob Agents Chemother. 2015;59:1004–13.

    Article  CAS  PubMed  Google Scholar 

  93. Dolton MJ, McLachlan AJ. Optimizing azole antifungal therapy in the prophylaxis and treatment of fungal infections. Curr Opin Infect Dis. 2014;27:493–500.

    Article  CAS  PubMed  Google Scholar 

  94. Dolton MJ, McLachlan AJ. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents. 2014;44:183–93.

    Article  CAS  PubMed  Google Scholar 

  95. http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/62996. Assessed 29 Jan 2015.

  96. Moriyama B, Henning SA, Leung J, et al. Adverse interactions between antifungal azoles and vincristine: review and analysis of cases. Mycoses. 2012;55:290–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Moriyama B, Falade-Nwulia O, Leung J, et al. Prolonged half-life of voriconazole in a CYP2C19 homozygous poor metabolizer receiving vincristine chemotherapy: avoiding a serious adverse drug interaction. Mycoses. 2011;54:e877–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the intramural research program of the National Institutes of Health. The opinions expressed in this paper are the authors’ and do not reflect those of the National Institutes of Health (NIH) Clinical Center, NIH, Department of Health and Human Services, or the Federal government. Dr. Walsh is a Scholar of the Henry Schueler Foundation and a Scholar of Pediatric Infectious Diseases of the Sharpe Family Foundation. The assistance of Judith Welsh, NIH Library, Office of the Director for the library research is gratefully acknowledged.

Compliance With Ethics Guidelines

Conflict of Interest

Sameer Kadri, Stacey A. Henning, Robert L. Danner, and Scott R. Penzak declare that they have no conflict of interest.

Brad Moriyama owns a stock in Merck.

Thomas J. Walsh has received research grants from Novartis, Astellas, Merck, ContraFect, Pfizer, Cubist, Theravance, and consultancy fees from Vestagen, ICo Therapeutics, Inc., Trius, Sigma Tau, Astellas, and Drais Pharmaceuticals, ContraFect, Novartis, Pfizer, Methylgene, and Cubist.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Moriyama.

Additional information

This article is part of the Topical Collection on Pharmacology and Pharmacodynamics of Antifungal Agents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriyama, B., Kadri, S., Henning, S.A. et al. Therapeutic Drug Monitoring and Genotypic Screening in the Clinical Use of Voriconazole. Curr Fungal Infect Rep 9, 74–87 (2015). https://doi.org/10.1007/s12281-015-0219-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-015-0219-0

Keywords

Navigation