Skip to main content
Log in

Candida albicans Niche Specialization: Features That Distinguish Biofilm Cells from Commensal Cells

  • Translational Research (R Wheeler, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The fungus Candida albicans is a frequent commensal colonizer of the human gastrointestinal (GI) tract, but is also an opportunistic pathogen. This review explores features that distinguish the colonizing and pathogenic forms of C. albicans. Candida albicans in a biofilm is used as an example of a pathogenic form of the organism, because biofilms are a common feature of device-associated C. albicans infections. Biofilms (complex, sessile communities of cells) have been the subject of several large-scale gene expression studies. Biofilms and commensal C. albicans colonizing the murine GI tract show a variety of differentially expressed genes. Cell surface proteins encoded by these differentially expressed genes are especially attractive as targets for new clinical prevention, diagnosis, or treatment tools that are specific for C. albicans in its pathogenic biofilm state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Bonhomme J, d'Enfert C. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol. 2013;16:398–403. A recent review summarizing current understanding of drug resistance in Candida albicans biofilms.

    Article  CAS  PubMed  Google Scholar 

  2. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9:109–18. A comprehensive review of the stages in Candida albicans biofilm formation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ramage G, Rajendran R, Sherry L, et al. Fungal biofilm resistance. Int J Microbiol. 2012;2012:528521. Description of drug resistance mechanisms in Candida albicans biofilms.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Pierce CG, Lopez-Ribot JL. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin Drug Discov. 2013;8:1117–26.

    Article  CAS  PubMed  Google Scholar 

  5. Schulze J, Sonnenborn U. Yeasts in the gut: from commensals to infectious agents. Dtsch Arztebl Int. 2009;106:837–42.

    PubMed Central  PubMed  Google Scholar 

  6. Akpan A, Morgan R. Oral candidiasis. Postgrad Med J. 2002;78:455–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cassone A, Cauda R. Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS. 2012;26:1457–72.

    Article  CAS  PubMed  Google Scholar 

  8. Das I, Nightingale P, Patel M, et al. Epidemiology, clinical characteristics, and outcome of candidemia: experience in a tertiary referral center in the UK. Int J Infect Dis. 2011;15:e759–63.

    Article  CAS  PubMed  Google Scholar 

  9. Giri S, Kindo AJ. A review of Candida species causing blood stream infection. Indian J Med Microbiol. 2012;30:270–8.

    Article  CAS  PubMed  Google Scholar 

  10. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36:1–53.

    Article  PubMed  Google Scholar 

  11. Sims CR, Ostrosky-Zeichner L, Rex JH. Invasive candidiasis in immunocompromised hospitalized patients. Arch Med Res. 2005;36:660–71.

    Article  PubMed  Google Scholar 

  12. Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35.

    Article  CAS  PubMed  Google Scholar 

  13. Miranda LN, van der Heijden IM, Costa SF, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72:9–16.

    Article  CAS  PubMed  Google Scholar 

  14. Nucci M, Anaissie E. Revisiting the source of candidemia: skin or gut? Clin Infect Dis. 2001;33:1959–67.

    Article  CAS  PubMed  Google Scholar 

  15. Bouza E, Munoz P. Epidemiology of candidemia in intensive care units. Int J Antimicrob Agents. 2008;32 Suppl 2:S87–91.

    Article  CAS  PubMed  Google Scholar 

  16. Zollner-Schwetz I, Auner HW, Paulitsch A, et al. Oral and intestinal Candida colonization in patients undergoing hematopoietic stem-cell transplantation. J Infect Dis. 2008;198:150–3.

    Article  PubMed  Google Scholar 

  17. Walraven CJ, Lee SA. Antifungal lock therapy. Antimicrob Agents Chemother. 2013;57:1–8. A recent discussion of treatment approaches for biofilm-associated infected catheters.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.

    Article  PubMed  Google Scholar 

  19. Zaoutis TE, Argon J, Chu J, et al. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis. 2005;41:1232–9.

    Article  PubMed  Google Scholar 

  20. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cleveland AA, Farley MM, Harrison LH, et al. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin Infect Dis. 2012;55:1352–61.

    Article  CAS  PubMed  Google Scholar 

  22. Vecchiarelli A, Pericolini E, Gabrielli E, et al. New approaches in the development of a vaccine for mucosal candidiasis: progress and challenges. Front Microbiol. 2012;3:294.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hernandez-Santos N, Gaffen SL. Th17 cells in immunity to Candida albicans. Cell Host Microbe. 2012;11:425–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nett J, Lincoln L, Marchillo K, et al. Beta-1,3 glucan as a test for central venous catheter biofilm infection. J Infect Dis. 2007;195:1705–12.

    Article  CAS  PubMed  Google Scholar 

  25. de Groot PW, Bader O, de Boer AD, et al. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell. 2013;12:470–81.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Heilmann CJ, Sorgo AG, Klis FM. News from the fungal front: wall proteome dynamics and host-pathogen interplay. PLoS Pathog. 2012;8:e1003050.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Del Bono V, Delfino E, Furfaro E, et al. Clinical performance of the (1,3)-beta-D-glucan assay in early diagnosis of nosocomial Candida bloodstream infections. Clin Vaccine Immunol. 2011;18:2113–7.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ostrosky-Zeichner L, Alexander BD, Kett DH, et al. Multicenter clinical evaluation of the (1→3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis. 2005;41:654–9.

    Article  CAS  PubMed  Google Scholar 

  29. Nett J, Lincoln L, Marchillo K, et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother. 2007;51:510–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Taff HT, Mitchell KF, Edward JA, et al. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013;8:1325–37.

    Article  CAS  PubMed  Google Scholar 

  31. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006;55:999–1008.

    Article  CAS  PubMed  Google Scholar 

  32. Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog. 2012;8:e1002585.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183:5385–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cirasola D, Sciota R, Vizzini L, et al. Experimental biofilm-related Candida infections. Future Microbiol. 2013;8:799–805.

    Article  CAS  PubMed  Google Scholar 

  35. Uppuluri P, Chaturvedi AK, Srinivasan A, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010;6:e1000828.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 2014;5:161–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mathe L, Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet. 2013;59:251–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lewis RE, Kontoyiannis DP, Darouiche RO, et al. Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob Agents Chemother. 2002;46:3499–505.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ramage G, Vande Walle K, Wickes BL, et al. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother. 2001;45:2475–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ramage G, VandeWalle K, Lopez-Ribot JL, et al. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett. 2002;214:95–100.

    Article  CAS  PubMed  Google Scholar 

  41. Andes D, Nett J, Oschel P, et al. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004;72:6023–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ramage G, Saville SP, Thomas DP, et al. Candida biofilms: an update. Eukaryot Cell. 2005;4:633–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kabir MA, Hussain MA, Ahmad Z. Candida albicans: a model organism for studying fungal pathogens. ISRN Microbiol. 2012;2012:538694.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Braun BR, van Het Hoog M, d'Enfert C, et al. A human-curated annotation of the Candida albicans genome. PLoS Genet. 2005;1:36–57.

    Article  CAS  PubMed  Google Scholar 

  45. Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148:126–38. A recent comprehensive study of gene expression during biofilm growth.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Yeater KM, Chandra J, Cheng G, et al. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 2007;153:2373–85.

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Sanchez S, Aubert S, Iraqui I, et al. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell. 2004;3:536–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rosenbach A, Dignard D, Pierce JV, et al. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell. 2010;9:1075–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Pierce JV, Dignard D, Whiteway M, et al. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot Cell. 2013;12:37–49. A study of gene expression during colonization of the murine GI tract.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bonhomme J, Chauvel M, Goyard S, et al. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol Microbiol. 2011;80:995–1013.

    Article  CAS  PubMed  Google Scholar 

  51. Goyard S, Knechtle P, Chauvel M, et al. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol Biol Cell. 2008;19:2251–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kadosh D, Johnson AD. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell. 2005;16:2903–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nett JE, Crawford K, Marchillo K, et al. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother. 2010;54:3505–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nett JE, Sanchez H, Cain MT, et al. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis. 2010;202:171–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Mio T, Adachi-Shimizu M, Tachibana Y, et al. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J Bacteriol. 1997;179:4096–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Taff HT, Nett JE, Zarnowski R, et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog. 2012;8:e1002848. This paper highlights the importance of biofilm extracellular matrix for antifungal resistance.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Leon C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34:730–7.

    Article  PubMed  Google Scholar 

  58. Paphitou NI, Ostrosky-Zeichner L, Rex JH. Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Med Mycol. 2005;43:235–43.

    Article  PubMed  Google Scholar 

  59. Ostrosky-Zeichner L, Sable C, Sobel J, et al. Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. Eur J Clin Microbiol Infect Dis. 2007;26:271–6.

    Article  CAS  PubMed  Google Scholar 

  60. Shorr AF, Tabak YP, Johannes RS, et al. Candidemia on presentation to the hospital: development and validation of a risk score. Crit Care. 2009;13:R156.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Susan Hadley for helpful discussion. S. E. H. received partial support from grant T32GM008448 from the National Institutes of Health. C. A. K. and S. E. H. were supported in part by grant R01AI081794 from the National Institutes of Health (to C.A.K.).

Compliance with Ethics Guidelines

Conflict of Interest

S.E. Herwald declares no conflicts of interest.

C.A. Kumamoto declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by either of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Kumamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herwald, S.E., Kumamoto, C.A. Candida albicans Niche Specialization: Features That Distinguish Biofilm Cells from Commensal Cells. Curr Fungal Infect Rep 8, 179–184 (2014). https://doi.org/10.1007/s12281-014-0178-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-014-0178-x

Keywords

Navigation