Skip to main content
Log in

PprM is necessary for up-regulation of katE1, encoding the major catalase of Deinococcus radiodurans, under unstressed culture conditions

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Deinococcus radiodurans is a poly-extremophilic organism, capable of tolerating a wide variety of different stresses, such as gamma/ultraviolet radiation, desiccation, and oxidative stress. PprM, a cold shock protein homolog, is involved in the radiation resistance of D. radiodurans, but its role in the oxidative stress response has not been investigated. In this study, we investigated the effect of pprM mutation on catalase gene expression. pprM disruption decreased the mRNA and protein levels of KatE1, which is the major catalase in D. radiodurans, under normal culture conditions. A pprM mutant strain (pprM MT) exhibited decreased catalase activity, and its resistance to hydrogen peroxide (H2O2) decreased accordingly compared with that of the wild-type strain. We confirmed that RecG helicase negatively regulates katE1 under normal culture conditions. Among katE1 transcriptional regulators, the positive regulator drRRA was not altered in pprM -, while the negative regulators perR, dtxR, and recG were activated more than 2.5-fold in pprM MT. These findings suggest that PprM is necessary for KatE1 production under normal culture conditions by down-regulation of katE1 negative regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Airo, A., Chan, S.L., Martinez, Z., Platt, M.O., and Trent, J.D. 2004. Heat shock and cold shock in Deinococcus radiodurans. Cell. Biochem. Biophys. 40, 277–288.

    Article  CAS  PubMed  Google Scholar 

  • Appukuttan, D., Seo, H.S., Jeong, S.W, Im, S.H., Joe, M.H., Song, D.S., Choi, J.J., and Lim, S.Y. 2015. Expression and mutational analysis of DinB-like protein DR0053 in Deinococcus radiodurans. PLoS One 10, e0118275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barria, C., Malecki, M., and Arraiano, C.M. 2013. Bacterial adaptation to cold. Microbiology 159, 2437–2443.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Wu, R., Xu, G., Fang, X., Qiu, X., Guo, H., Tian, B., and Hua, Y. 2010. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 396, 413–418.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Xu, G., Zhao, Y., Tian, B., Lu, H., Yu, X., Xu, Z., Ying, N., Hu, S., and Hua, Y. 2008. A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS One 3, e1602.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang, S.M. and Schellhorn, H.E. 2012. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch. Biochem. Biophys. 525, 161–169.

    Article  CAS  PubMed  Google Scholar 

  • Daly, M.J. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat. Rev. Microbiol. 7, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • D’Autreaux, B. and Toledano, M.B. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell. Biol. 8, 813–824.

    Article  PubMed  Google Scholar 

  • Horn, G., Hofweber, R., Kremer, W., and Kalbitzer, H.R. 2007. Structure and function of bacterial cold shock proteins. Cell. Mol. Life Sci. 64, 1457–1470.

    Article  CAS  PubMed  Google Scholar 

  • Hua, Y., Narumi, I., Gao, G., Tian, B., Satoh, K., Kitayama, S., and Shen, B. 2003. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 306, 354–360.

    Article  CAS  PubMed  Google Scholar 

  • Imlay, J.A. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, S.W., Jung, J.H., Kim, M.K., Seo, H.S., Lim, H.M., and Lim, S.Y. 2016. The three catalases in Deinococcus radiodurans: Only two show catalase activity. Biochem. Biophys. Res. Commun. 469, 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, I., Tamura, T., Sghaier, H., Narumi, I., Yamaguchi, S., Umeda, K., and Inagaki, K. 2006. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J. Biosci. Bioeng. 101, 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Leenaars, M. and Hendriksen, C.F. 2005. Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. ILAR J. 46, 269–279.

    Article  CAS  PubMed  Google Scholar 

  • Lipton, M.S., Pasa-Tolic, L., Anderson, G.A., Anderson, D.J., Auberry, D.L., Battista, J.R., Daly, M.J., Fredrickson, J., Hixson, K.K., Kostandarithes, H., et al. 2002. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci. USA 99, 11049–11054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Wang, L., Li, T., Lin, L., Dai, S., Tian, B., and Hua, Y. 2014. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 450, 575–580.

    Article  CAS  PubMed  Google Scholar 

  • Lu, H., Chen, H., Xu, G., Shah, A.M., and Hua, Y. 2012. DNA binding is essential for PprI function in response to radiation damage in Deinococcus radiodurans. DNA Repair (Amst) 11, 139–145.

    Article  CAS  Google Scholar 

  • Lu, H., Gao, G., Xu, G., Fan, L., Yin, L., Shen, B., and Hua, Y. 2009. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol. Cell. Proteomics 8, 481–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludanyi, M., Blanchard, L., Dulermo, R., Brandelet, G., Bellanger, L., Pignol, D., Lemaire, D., and de Groot, A. 2014. Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol. Microbiol. 94, 434–449.

    Article  CAS  PubMed  Google Scholar 

  • Markillie, L.M., Varnum, S.M., Hradecky, P., and Wong, K.K. 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J. Bacteriol. 181, 666–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, S. and Imlay, J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525, 145–160.

    Article  CAS  Google Scholar 

  • Ohba, H., Satoh, K., Sghaier, H., Yanagisawa, T., and Narumi, I. 2009. Identification of PprM: a modulator of the PprI-dependent DNA damage response in Deinococcus radiodurans. Extremophiles 13, 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare, S., Tadigotla, V., Shin, W.H., Sengupta, A., and Severinov, K. 2006. Analysis of Escherichia coli global gene expression profiles in response to overexpression and deletion of CspC and CspE. J. Bacteriol. 188, 2521–2527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade, D. and Radman, M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75, 133–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vujicic-Zagar, A., Dulermo, R., Le Gorrec, M., Vannier, F., Servant, P., Sommer, S., de Groot, A., and Serre, L. 2009. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in deinococcaceae. J. Mol. Biol. 386, 704–716.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P. and Schellhorn, H.E. 1995. Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can. J. Microbiol. 41, 170–176.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Xu, G., Chen, H., Zhao, Y., Xu, N., Tian, B., and Hua, Y. 2008. DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. Mol. Microbiol. 67, 1211–1222.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Xu, Q., Lu, H., Lin, L., Wang, L., Xu, H., Cui, X., Zhang, H., Li, T., and Hua, Y. 2015. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequencespecificity of the proteolytic reaction. PLoS One 10, e0122071.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Chen, W., Zhao, Y., Xu, H., and Hua, Y. 2009. Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can. J. Microbiol. 55, 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Yin, L., Wang, L., Lu, H., Xu, G., Chen, H., Zhan, H., Tian, B., and Hua, Y. 2010. DRA0336, another OxyR homolog, involved in the antioxidation mechanisms in Deinococcus radiodurans. J. Microbiol. 48, 473–479.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heon-Man Lim or Sangyong Lim.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, SW., Seo, H.S., Kim, MK. et al. PprM is necessary for up-regulation of katE1, encoding the major catalase of Deinococcus radiodurans, under unstressed culture conditions. J Microbiol. 54, 426–431 (2016). https://doi.org/10.1007/s12275-016-6175-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6175-8

Keywords

Navigation