Skip to main content
Log in

Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avio, L., Castaldini, M., Fabiani, A., Bedini, S., Sbrana, C., Turrini, A., and Giovannetti, M. 2013. Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol. Biochem. 67, 285–294.

    Article  CAS  Google Scholar 

  • Azcón-Aguilar, C. and Barea, J.M. 1981. Field inoculation of Medicago with V-A mycorrhiza and Rhizobium in phosphate-fixing agricultural soil. Soil Biol. Biochem. 13, 19–22.

    Article  Google Scholar 

  • Bainard, L.D., Bainard, J.D., Hamel, C., and Gan, Y. 2014. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol. Ecol. 88, 333–344.

    Article  CAS  PubMed  Google Scholar 

  • Bainard, L.D., Dai, M., Gomez, E.F., Torres-Arias, Y., Bainard, J.D., Sheng, M., Eilers, W., and Hamel, C. 2015. Arbuscular mycorrhizal fungal communities are influenced by agricultural land use and not soil type among the Chernozem great groups of the Canadian Prairies. Plant Soil 387, 351–362.

    Article  CAS  Google Scholar 

  • Bainard, L.D., Koch, A.M., Gordon, A.M., Newmaster, S.G., Thevathasan, N.V., and Klironomos, J.N. 2011. Influence of trees on the spatial structure of arbuscular mycorrhizal communities in a temperate tree-based intercropping system. Agric. Ecosyst. Environ. 144, 13–20.

    Article  Google Scholar 

  • Balestrini, R., Magurno, F., Walker, C., Lumini, E., and Bianciotto, V. 2010. Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ. Microbiol. Rep. 2, 594–604.

    Article  PubMed  Google Scholar 

  • Blaser, B.C., Gibson, L.R., Singer, J.W., and Jannink, J.L. 2006. Optimizing seeding rates for winter cereal grains and frost-seeded red clover intercrops. Agron. J. 98, 1041–1049.

    Article  Google Scholar 

  • Borriello, R., Lumini, E., Girlanda, M., Bonfante, P., and Bianciotto, V. 2012. Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol. Fertil. Soils 48, 911–922.

    Article  Google Scholar 

  • Boyetchko, S.M. and Tewari, J.P. 1990. Root colonization of different hosts by the vesicular–arbuscular mycorrhizal fungus Glomus dimorphicum. Plant Soil 129, 131–136.

    Google Scholar 

  • Bray, R.H. and Kurtz, L.T. 1945 Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–45.

    Article  CAS  Google Scholar 

  • Brundrett, M., Beegher, N., Dell, B., Groove, T., and Malajczuk, N. 1996. Working with mycorrhizas in Forestry and Agriculture. ACIAR Monograph 32.

    Google Scholar 

  • Chifflot, V., Rivest, D., Olivier, A., Cogliastro, A., and Khasa, D. 2009. Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agric. Ecosyst. Environ. 131, 32–39.

    Article  CAS  Google Scholar 

  • Clark, R.B. and Zeto, S.K. 2000. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant. Nutr. 23, 867–902.

    Article  CAS  Google Scholar 

  • Daniell, T.J., Husband, R., Fitter, A.H., and Young, J.P.W. 2001. Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol. Ecol. 36, 203–209.

    Article  CAS  PubMed  Google Scholar 

  • FAO. 2015. The State of Food Insecurity in the World 2014. Strengthening the enabling environment for food security and nutrition. http://wwwfaoorg/3/a-i4646e.

  • Giovannetti, M., Azzolini, D., and Citernesi, A.S. 1999. Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 65, 5571–5575.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giovannetti, M., Fortuna, P., Citernesi, A.S., Morini, S., and Nuti, M.P. 2001. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol. 151, 717–724.

    Article  Google Scholar 

  • Giovannetti, M. and Mosse, B. 1980. An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500.

    Article  Google Scholar 

  • Giovannetti, M., Schubert, A., Cravero, M.C., and Salutini, L. 1988. Spore production by the vesicular-arbuscular mycorrhizal fungus Glomus monosporum as related to host species, root colonization and plant growth enhancement. Biol. Fertil. Soils 6, 120–124.

    Article  Google Scholar 

  • Gollotte, A., van Tuinen, D., and Atkinson, D. 2004. Diversity of arbuscular mycorrhizal fungi colonizing roots of the grass species Agrostis capillaries and Lolium perenne in a field experiment. Mycorrhiza 14, 111–117.

    Article  PubMed  Google Scholar 

  • Gosling, P., Mead, A., Proctor, M., Hammond, J.P., and Bending, G.D. 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol. 198, 546–556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hart, M.M., Forsythe, J., Oshowski, B., Bücking, H., Jansa, J., and Kiers, E.T. 2013. Hiding in a crowd–does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis?. Symbiosis 59, 47–56.

    Article  Google Scholar 

  • Higo, M., Isobe, K., Drijber, R.A., Kondo, K., Yamaguchi, M., Takeyama, S., Suzuki, Y., Niijima, D., Matsuda, Y., Ishii, R., and Torigoe, Y. 2014. Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean. Biol. Fertil. Soils 50, 913–926.

    Article  Google Scholar 

  • Higo, M., Isobe, K., Kang, D.J., Ujiie, K., Drijber, R.A., and Ishii, R. 2010. Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod. Sci. 13, 74–79.

    Article  Google Scholar 

  • Higo, M., Isobe, K., Kondo, T., Yamaguchi, M., Takeyama, S., Drijber, R.A., and Torigoe, Y. 2015a. Temporal variation of the molecular diversity of arbuscular mycorrhizal communities in three different winter cover crop rotational systems. Biol. Fertil. Soils 51, 21–32.

    Article  Google Scholar 

  • Higo, M., Isobe, K., Matsuda, Y., Ichida, M., and Torigoe, Y. 2015b. Influence of sowing season and host crop identity on the community structure of arbuscular mycorrhizal fungi colonizing roots of two different gramineous and leguminous crop species. Adv. Microbiol. 5, 107–116.

    Article  Google Scholar 

  • Higo, M., Isobe, K., Yamaguchi, M., Drijber, R.A., and Ishii, R. 2013. Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol. Fertil. Soils 49, 1085–1096.

    Article  Google Scholar 

  • Higo, M., Isobe, K., Yamaguchi, M., and Torigoe, Y. 2015c. Impact of a soil sampling strategy on the spatial distribution and diversity of arbuscular mycorrhizal communities at a small scale in two winter cover crop rotational systems. Ann. Microbiol. 65, 985–993.

    Article  Google Scholar 

  • Holland, T.C., Bowen, P., Bogdanoff, C., and Hart, M.M. 2014. How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol. Fertil. Soils 50, 667–674.

    Article  Google Scholar 

  • Isobe, K., Higo, M., Kondo, T., Sato, N., Takeyama, S., and Torigoe, Y. 2014. Effect of winter crop species on arbuscular mycorrhizal fungal colonization and subsequent soybean yields. Plant Prod. Sci. 17, 260–267.

    Article  Google Scholar 

  • Isobe, K., Maruyama, K., Nagai, S., Higo, M., Maekawa, T., Mizonobe, G., Drijber, R.A., and Ishii, R. 2011. Arbuscular mycorrhizal fungal community structure in soybean roots: Comparison between Kanagawa and Hokkaido, Japan. Adv. Microbiol. 1, 13–22.

    Article  Google Scholar 

  • Isobe, K. and Tsuboki, Y. 1998. The Relationship between growth promotion by arbuscular mycorrhizal fungi and root morphology and phosphorus absorption in gramineousand leguninous groups. Jpn. J. Crop Sci. 67, 347–352.

    Article  CAS  Google Scholar 

  • Jansa, J., Erb, A., Oberholzer, H.R., Šmilauer, P., and Egli, S. 2014. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 23, 2118–2135.

    Article  CAS  PubMed  Google Scholar 

  • Jansa, J., Smith, F.A., and Smith, S.E. 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi?. New Phytol. 177, 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Jemo, M., Souleymanou, A., Frossard, E., and Jansa, J. 2014. Cropping enhances mycorrhizal benefits to maize in a tropical soil. Soil Biol. Biochem. 79, 117–124.

    Article  CAS  Google Scholar 

  • Kaspar, T.C., Radke, J.K., and Laflen, J.M. 2001. Small grain cover crops and wheel traffic effects on infiltration, runoff and erosion. J. Soil Water Conserv. 56, 160–164.

    Google Scholar 

  • Karasawa, T. and Takebe, M. 2012. Temporal or spatial arrangements of cover crops to promote arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal crops. Plant Soil 353, 355–366.

    Article  CAS  Google Scholar 

  • Knegt, B., Jansa, J., Franken, O., Engelmoer, D.J., Werner, G.D., Bücking, H., and Kiers, E.T. 2015. Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecol. DOI:10.1016/jfuneco.2014.09.011.

    Google Scholar 

  • Lekberg, Y., Schnoor, T., Kjøller, R., Gibbons, S.M., Hansen, L.H., Al-Soud, W.A., Sorensen, S.J., and Rosendahl, S. 2012. 454-Sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J. Ecol. 100, 151–160.

    Article  Google Scholar 

  • Lendenmann, M., Thonar, C., Barnard, R.L., Salmon, Y., Werner, R.A., Frossard, E., and Jansa, J. 2011. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21, 689–702.

    Article  CAS  PubMed  Google Scholar 

  • Mummey, D.L. and Rillig, M.C. 2008. Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol. Ecol. 64, 260–270.

    Article  CAS  PubMed  Google Scholar 

  • Njeru, E.M., Avio, L., Sbrana, C., Turrini, A., Bocci, G., Bàrberi, P., and Giovannetti, M. 2014. First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron. Sustain. Dev. 34, 841–848.

    Article  Google Scholar 

  • Oehl, F., Sieverding, E., Ineichen, K., Mäder, P., Boller, T., and Wiemken, A. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69, 2816–282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oka, N., Karasawa, T., Okazaki, K., and Takebe, M. 2010. Maintenance of soybean yield with reduced phosphorus application by previous cropping with mycorrhizal plants. Soil Sci. Plant Nutr. 56, 824–830.

    Article  CAS  Google Scholar 

  • Öpik, M., Zobel, M., Cantero, J.J., Davison, J., Facelli, J.M., Hiiesalu, I., Jairus, T., Kalwij, J.M., Koorem, K., Leal, M.E., et al. 2013. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411–430.

    Article  PubMed  Google Scholar 

  • Parkin, T.B., Kaspar, T.C., and Singer, J.W. 2006. Cover crop effects on the fate of N following soil application of swine manure. Plant Soil 289, 141–152.

    Article  CAS  Google Scholar 

  • Phillips, J.M. and Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–160.

    Article  Google Scholar 

  • Reicosky, D.C. and Forcella, F. 1998. Cover crops and soil quality interactions in agroecosystems. J. Soil Water Conserv. 53, 224–229.

    Google Scholar 

  • Renker, C., Weißhuhn, K., Kellner, H., and Buscot, F. 2006. Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, this is the question. Mycorrhiza 16, 525–531.

    Article  CAS  PubMed  Google Scholar 

  • Rillig, M.C. and Field, C.B. 2003. Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil 254, 383–391.

    Article  CAS  Google Scholar 

  • Ryder, M.H. and Fares, A. 2008. Evaluating cover crops (Sudex, Sunn Hemp, Oats) for use as vegetative filters to control sediment and nutrient loading from agricultural runoff in a Hawaiian watershed. J. Am. Water Resour. As. 44, 640–653.

    Article  Google Scholar 

  • Sa, T.M. and Israel, D.W. 1995. Nitrogen assimilation in nitrogenfixing soybean plants during phosphorus deficiency. Crop Sci. 35, 814–820.

    Article  CAS  Google Scholar 

  • Smith, S.E. and Read, D.J. 2008. Arbuscular mycorrhizaes, pp. 13–187. In Smith, S.E. and Read, D.J. (eds), Mycorrhizal symbiosis 3rd Edition. Academic Press, London, UK.

  • Taffouo, V.D., Ngwene, B., Akoa, A., and Franken, P. 2014. Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants. Mycorrhiza 24, 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tennant, D. 1975. A test of a modified line intersect method of estimating root length. J. Ecol. 63, 995–1001.

    Article  Google Scholar 

  • ter Braak, C. and Šmilauer, P. 2002. CANOCO reference manual and Canodraw for Windows user's guide: Software for canonical community ordination, 4.5 (Ed). Microcomputer Power, Ithaca.

    Google Scholar 

  • Thonar, C., Frossard, E., Smilauer, P., and Jansa, J. 2014. Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Mol. Ecol. 23, 733–746.

    Article  PubMed  Google Scholar 

  • Thonar, C., Schnepf, A., Frossard, E., Roose, T., and Jansa, J. 2011. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231–245.

    Article  CAS  Google Scholar 

  • Thorup-Kristensen, K., Dresboll, D.B., and Kristensen, H.L. 2012. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. Euro. Agron. J. 37, 66–82.

    Article  Google Scholar 

  • Trouvelot, S., van Tuinen, D., Hijri, M., and Gianinazzi-Pearson, V. 1999. Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hyhridization. Mycorrhiza 8, 203–206.

    Article  CAS  Google Scholar 

  • Tsuji, H., Yamamoto, H., Matsuo, K., and Usuki, K. 2002. Effects of no-tillage on the root system development of groundnut, maize and soybean in Andosol. Root Research 2, 43–4.

    Article  Google Scholar 

  • van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, E.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72.

    Article  CAS  Google Scholar 

  • van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A., and Gianinazzi-Pearson, V. 1998. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol. Ecol. 7, 879–887.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, B.E., Mummey, D.L., Rillig, M.C., and Klironomos, J.N. 2007. Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza 17, 175–183.

    Article  PubMed  Google Scholar 

  • Yang, H., Zang, Y., Yuan, Y., Tang, J., and Chen, X. 2012. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol. Biol. 12, 50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yasuda, K., Fujii, Y., and Shibuya, T. 1987. Difference of plants growth and phosphorus uptake at low phosphorus condition. Jpn. Soil Sci. Plant Nutri. 58, 180–186.

    CAS  Google Scholar 

  • Yoneyama, T., Horie, H., Takebe, M., and Tanno, F. 1990. Absorption of phosphorus from soil by crops: ii. the relationship between root mass and phosphorus absorption. Jpn. Soil Sci. Plant Nutri. 61, 382–385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Higo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higo, M., Isobe, K., Miyazawa, Y. et al. Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation. J Microbiol. 54, 86–97 (2016). https://doi.org/10.1007/s12275-016-5379-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5379-2

Keywords

Navigation