Skip to main content
Log in

Experimental phasing using zinc and sulfur anomalous signals measured at the zinc absorption peak

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

An Author’s Correction to this article was published on 08 November 2013

Abstract

Iron is an essential transition metal required for bacterial growth and survival. Excess free iron can lead to the generation of reactive oxygen species that can cause severe damage to cellular functions. Cells have developed iron-sensing regulators to maintain iron homeostasis at the transcription level. The ferric uptake regulator (Fur) is an iron-responsive regulator that controls the expression of genes involved in iron homeostasis, bacterial virulence, stress resistance, and redox metabolism. Here, we report the expression, purification, crystallization, and phasing of the apo-form of Bacillus subtilis Fur (BsFur) in the absence of regulatory metal ions. Crystals were obtained by microbatch crystallization method at 295 K and diffraction data at a resolution of 2.6 Å was collected at the zinc peak wavelength (λ=1.2823 Å). Experimental phasing identified the positions of one zinc atom and four sulfur atoms of cysteine residues coordinating the zinc atom, indicating that the data contained a meaningful anomalous scattering originating from the ordered zinc-coordinating sulfur atoms, in spite of the small anomalous signals of sulfur atoms at the examined wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., and et al. 2010. Phenix: A comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J.M. and Shi, Y. 1996. The galvanization of biology: A growing appreciation for the roles of zinc. Science 271, 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  • Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., and et al. 1998. Crystallography & NMR System: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921.

    Article  PubMed  Google Scholar 

  • Butcher, J., Sarvan, S., Brunzelle, J.S., Couture, J.F., and Stintzi, A. 2012. Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc. Natl. Acad. Sci. USA 109, 10047–10052.

    Article  PubMed  CAS  Google Scholar 

  • Cha, S.S., An, Y.J., Jeong, C.S., Kim, M.K., Lee, S.G., Lee, K.H., and Oh, B.H. 2012. Experimental phasing using zinc anomalous scattering. Acta Crystallogr. D Biol. Crystallogr. 68, 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  • da Silva Neto, J.F., Braz, V.S., Italiani, V.C., and Marques, M.V. 2009. Fur controls iron homeostasis and oxidative stress defense in the oligotrophic α-Proteobacterium Caulobacter crescentus. Nucleic Acids Res. 37, 4812–4825.

    Article  PubMed  Google Scholar 

  • Delany, I., Pacheco, A.B., Spohn, G., Rappuoli, R., and Scarlato, V. 2001a. Iron-dependent transcription of the frpb gene of Helicobacter pylori is controlled by the Fur repressor protein. J. Bacteriol. 183, 4932–4937.

    Article  PubMed  CAS  Google Scholar 

  • Delany, I., Spohn, G., Rappuoli, R., and Scarlato, V. 2001b. The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol. Microbiol. 42, 1297–1309.

    Article  PubMed  CAS  Google Scholar 

  • Dian, C., Vitale, S., Leonard, G.A., Bahlawane, C., Fauquant, C., Leduc, D., Muller, C., de Reuse, H., Michaud-Soret, I., and Terradot, L. 2011. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol. Microbiol. 79, 1260–1275.

    Article  PubMed  CAS  Google Scholar 

  • Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

    Article  PubMed  Google Scholar 

  • Escolar, L., Perez-Martin, J., and de Lorenzo, V. 1999. Opening the iron box: Transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181, 6223–6229.

    PubMed  CAS  Google Scholar 

  • Gancz, H., Censini, S., and Merrell, D.S. 2006. Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect. Immun. 74, 602–614.

    Article  PubMed  CAS  Google Scholar 

  • Grosse-Kunstleve, R.W. and Adams, P.D. 2003. Substructure search procedures for macromolecular structures. Acta Crystallogr. D Biol. Crystallogr. 59, 1966–1973.

    Article  PubMed  CAS  Google Scholar 

  • Haber, F. and Weiss, J. 1932. On the catalysis of dydroperoxide. Naturwissenschaften 20, 948–950.

    Article  CAS  Google Scholar 

  • Hernandez, J.A., Bes, M.T., Fillat, M.F., Neira, J.L., and Peleato, M.L. 2002. Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state. Biochem. J. 366, 315–322.

    PubMed  CAS  Google Scholar 

  • Kadner, R.J. 2005. Regulation by iron: RNA rules the rust. J. Bacteriol. 187, 6870–6873.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.K., Lee, S., An, Y.J., Jeong, C.S., Ji, C.J., Lee, J.W., and Cha, S.S. 2013. In-house zinc SAD phasing at Cu kα edge. Mol. Cells 36, 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.J., Bang, S.H., Lee, K.H., and Park, S.J. 2007. Positive regulation of fur gene expression via direct interaction of Fur in a pathogenic bacterium, Vibrio vulnificus. J. Bacteriol. 189, 2629–2636.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.W. and Helmann, J.D. 2006. Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR. J. Biol. Chem. 281, 23567–23578.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.W. and Helmann, J.D. 2007. Functional specialization within the Fur family of metalloregulators. Biometals 20, 485–499.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Faulkner, M.J., and Helmann, J.D. 2012. Origins of specificity and cross-talk in metal ion sensing by Bacillus subtilis Fur. Mol. Microbiol. 86, 1144–1155.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Gabriel, S.E., and Helmann, J.D. 2011. Sequential binding and sensing of Zn(ii) by Bacillus subtilis Zur. Nucleic Acids Res. 39, 9130–9138.

    Article  PubMed  CAS  Google Scholar 

  • McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674.

    Article  PubMed  CAS  Google Scholar 

  • McHugh, J.P., Rodriguez-Quinones, F., Abdul-Tehrani, H., Svistunenko, D.A., Poole, R.K., Cooper, C.E., and Andrews, S.C. 2003. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J. Biol. Chem. 278, 29478–29486.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, R.A., Long, F., and Murshudov, G.N. 2012. Low-resolution refinement tools in 5 Acta Crystallogr. D Biol. Crystallogr. 68, 404–417.

    Article  CAS  Google Scholar 

  • Otwinowski, Z. and Minor, W. 1997. Processing of x-ray diffraction data collected in oscillation mode. Method Enzymol. 276, 307–326.

    Article  CAS  Google Scholar 

  • Palyada, K., Threadgill, D., and Stintzi, A. 2004. Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol. 186, 4714–4729.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, E., Haller, J.C., Mijovilovich, A., Meyer-Klaucke, W., Garman, E., and Vasil, M.L. 2003. Architecture of a protein central to iron homeostasis: Crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47, 903–915.

    Article  PubMed  CAS  Google Scholar 

  • Ramagopal, U.A., Dauter, M., and Dauter, Z. 2003. Phasing on anomalous signal of sulfurs: What is the limit? Acta Crystallogr. D Biol. Crystallogr. 59, 1020–1027.

    Article  PubMed  Google Scholar 

  • Schaible, U.E. and Kaufmann, S.H. 2004. Iron and microbial infection. Nat. Rev. Microbiol. 2, 946–953.

    Article  PubMed  CAS  Google Scholar 

  • Sheikh, M.A. and Taylor, G.L. 2009. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol. Microbiol. 72, 1208–1220.

    Article  PubMed  CAS  Google Scholar 

  • Sheldrick, G.M. 2010. Experimental phasing with shelxc/d/e: Combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J.H., Jung, H.J., An, Y.J., Cho, Y.B., Cha, S.S., and Roe, J.H. 2011. Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc. Natl. Acad. Sci. USA 108, 5045–5050.

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger, T.C. 2002. Automated structure solution, density modification and model building. Acta Crystallogr. D Biol. Crystallogr. 58, 1937–1940.

    Article  PubMed  Google Scholar 

  • Terwilliger, T.C. 2003. Solve and resolve: Automated structure solution and density modification. Methods Enzymol. 374, 22–37.

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger, T.C., Adams, P.D., Read, R.J., McCoy, A.J., Moriarty, N.W., Grosse-Kunstleve, R.W., Afonine, P.V., Zwart, P.H., and Hung, L.W. 2009. Decision-making in structure solution using Bayesian estimates of map quality: The PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601.

    Article  PubMed  CAS  Google Scholar 

  • Torres, V.J., Attia, A.S., Mason, W.J., Hood, M.I., Corbin, B.D., Beasley, F.C., Anderson, K.L., Stauff, D.L., McDonald, W.H., Zimmerman, L.J., and et al. 2010. Staphylococcus aureus fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect. Immun. 78, 1618–1628.

    Article  PubMed  CAS  Google Scholar 

  • Traore, D.A., El Ghazouani, A., Ilango, S., Dupuy, J., Jacquamet, L., Ferrer, J.L., Caux-Thang, C., Duarte, V., and Latour, J.M. 2006. Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol. Microbiol. 61, 1211–1219.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Won Lee or Sun-Shin Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kim, MK., Ji, CJ. et al. Experimental phasing using zinc and sulfur anomalous signals measured at the zinc absorption peak. J Microbiol. 51, 639–643 (2013). https://doi.org/10.1007/s12275-013-3412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3412-2

Keywords

Navigation