Skip to main content
Log in

Analysis and identification of ADP-ribosylated proteins of Streptomyces coelicolor M145

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mono-ADP-ribosylation is the enzymatic transfer of ADP-ribose from NAD+ to acceptor proteins catalyzed by ADP-ribosyltransferases. Using m-aminophenylboronate affinity chromatography, 2D-gel electrophoresis, in-gel digestion and MALDI-TOF analysis we have identified eight in vitro ADP-ribosylated proteins in Streptomyces coelicolor, which can be classified into three categories: (i) secreted proteins; (ii) metabolic enzymes using NAD+/NADH or NADP+/NADPH as coenzymes; and (iii) other proteins. The secreted proteins could be classified into two functional categories: SCO2008 and SC05477 encode members of the family of periplasmic extracellular solute-binding proteins, and SCO6108 and SC01968 are secreted hydrolases. Dehydrogenases are encoded by SC04824 and SC04771. The other targets are GlnA (glutamine synthetase I., SC02198) and SpaA (starvation-sensing protein encoded by SC07629). SCO2008 protein and GlnA had been identified as ADP-ribosylated proteins in previous studies. With these results we provided experimental support for a previous suggestion that ADP-ribosylation may regulate membrane transport and localization of periplasmic proteins. Since ADP-ribosylation results in inactivation of the target protein, ADP-ribosylation of dehydrogenases might modulate crucial primary metabolic pathways in Streptomyces. Several of the proteins identified here could provide a strong connection between protein ADP-ribosylation and the regulation of morphological differentiation in S. coelicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire, M., R.E. MacKenzie, and M. Cygler. 1998. The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme 1.5 A resolution. Structure 6, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Antelmann, H., C. Scharf, and M. Hecker. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J. Bacteriol. 182, 4478–4490.

    Article  CAS  PubMed  Google Scholar 

  • Bisse, E. and H. Wieland. 1992. Coupling of m-aminophenyboronic acid to S-triazine-activated Sephacryl: use in the affinity chromatography of glycated hemoglobins. J. Chromatogr. 575, 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Bornancin, F., M. Franco, J. Bigay, and M. Chabre. 1992. Functional modifications of transducin induced by cholera or pertussis-toxin-catalyzed ADP-ribosylation. Eur. J. Biochem. 210, 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Chater, K.F. 1993. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47, 685–713.

    Article  CAS  PubMed  Google Scholar 

  • Chater, K.F. 2006. Streptomyces inside out: a new perspective on the bacteria that provide us with antibiotics. Philos. Trans R. Soc. Lond. B Biol. Sci. 361, 761–768.

    Article  CAS  PubMed  Google Scholar 

  • Chater, K.F. and R. Losick. 1997. Mycelial life style of Streptomyces coelicolor A3(2) and its relatives, p. 149–182. In J.A. Shapiro and M. Dworkin (eds.), Bacteria as multicellular organisms. Oxford University Press, London, UK.

    Google Scholar 

  • Domenghini, M., C. Montecucco, W.C. Ripke, and R. Rappuoli. 1991. Computer modelling of the NAD binding site of ADP-ribosylating toxins: active-site structure and mechanism of NAD binding. Mol. Microbiol. 5, 23–31.

    Article  Google Scholar 

  • Fu, H.A., A. Hartmann, R.G. Lowery, W.P. Fitzmaurice, G.P. Roberts, and R.H. Burris. 1989. Posttranslational regulatory system for nitrogenase activity in Azospirillum spp. J. Bacteriol. 171, 4679–4685.

    CAS  PubMed  Google Scholar 

  • Haar, v.d.B., S. Walter, S. Schwapenheer, and H. Schrempf. 1997. A novel fusidic acid resistance gene from Streptomyces lividans 66 encodes a highly specific esterase. Microbiology 143, 867–874.

    Article  PubMed  Google Scholar 

  • Halbleib, C.M. and P.W. Ludden. 2000. Regulation of biological nitrogen fixation. J. Nutrition 130, 1081–1084.

    CAS  Google Scholar 

  • Hayashi, O. and K. Ueda. 1985. ADP-ribosylation. Annu. Rev. Biochem. 54, 73–100.

    Article  Google Scholar 

  • Hengel, S.M., S.A. Shaffer, B.L. Nunn, and D.R. Goodlett. 2009. Tandem mass spectrometry investigation of ADP-ribosylated kemptide. J. Am. Soc. Mass Spetrom. 20, 477–483.

    Article  CAS  Google Scholar 

  • Hesketh, A.R., D. Fink, B. Gust, H.U. Rexer, B. Scheel, K.F. Chater, W. Wohlleben, and A. Engels. 2002. The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol. Microbiol. 46, 319–330.

    Article  CAS  PubMed  Google Scholar 

  • Huisman, G.W. and R. Kolter. 1994. Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265, 537–539.

    Article  CAS  PubMed  Google Scholar 

  • Inaoka, T. and K. Ochi. 2002. RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J. Bacteriol. 184, 3923–3930.

    Article  CAS  PubMed  Google Scholar 

  • Jobst, K., A. Lakatos, and A. Horváth. 1992. Identification of basic nuclear proteins by their boronate complex. Biotech. Histochem. 67, 158–160.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. and M.L. Kahn. 1995. ADP-ribosylation of Rhizobium meliloti glutamine synthetase III in vivo. J. Biol. Chem. 270, 1624–1628.

    Article  CAS  PubMed  Google Scholar 

  • Lowery, R.G. and P.W. Ludden. 1990. Endogenous ADP-ribosylation in prokaryotes, ADP-ribosylating toxins and G-proteins, p. 459–468. In J. Moss and M. Vaughan (eds.) American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Ludden, P.W. 1994. Reversible ADP-ribosylation as a mechanism of enzyme regulation in prokaryotes. Mol. Cell. Biochem. 138, 123–129.

    Article  CAS  PubMed  Google Scholar 

  • Messner, P. 1997. Bacterial glycoproteins. Glycoconjugate J. 14, 3–11.

    Article  CAS  Google Scholar 

  • Ochi, K. 1987. Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: Significance of the stringent response (ppGpp) and GTP content in relation to A-factor. J. Bacteriol. 169, 3608–3616.

    CAS  PubMed  Google Scholar 

  • Oppenheimer, N.J. and A.L. Handlon. 1992. Mechanism of NAD-dependent enzymes, p. 453–505. In D.S. Sigman (ed.) The enzymes. Vol. XX. Academic Press, San Diego, USA.

    Google Scholar 

  • Penyige, A., G. Barabás, I. Szabó, and J.C. Ensign. 1990. ADP-ribosylation of membrane proteins of Streptomyces griseus strain 52-1. FEMS Microbiol. Lett. 57, 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Penyige, A., A. Kálmánczhelyi, A. Sipos, J.C. Ensign, and G. Barabás. 1994. Modification of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation. Biochem. Biophys. Res. Commun. 204, 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Penyige, A., E. Deák, A. Kálmánczhelyi, and G. Barabás. 1996. Evidence of a role for NAD+-glycohydrolase and ADP-ribosyltransferase in growth and differentiation of Streptomyces griseus NRRL B-2682: inhibition by m-aminophenylboronic acid. Microbiology 142, 1937–1944.

    Article  CAS  PubMed  Google Scholar 

  • Piette, A., A. Derouaux, P. Gerkens, E.E. Noens, G. Mazzuchelli, S. Vion, H.K. Koerten, Titgemeyer, E. De Pauw, P. Leprince, G.P. van Wezel, and S. Rigali. 2005. From dormant to germinating spores of Streptomyces coelicolor A3(2): New perspectives from the crp null mutant. J. Proteome Res. 4, 1699–1708.

    Article  CAS  PubMed  Google Scholar 

  • Rieul, C., J.C. Corta, F. Bleicher, and A.J. Cozzone. 1987. Effect of bacteriophage M13 infection on phosphorylation of dnaK protein and other Escherichia coli proteins. Eur. J. Biochem. 168, 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, D. and K.F. Chater. 1996. Characterization of spaA a Streptomyces coelicolor gene homologous to a gene involved in sensing starvation in Escherichia coli. Gene 177, 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Shima, J., A. Penyige, and K. Ochi. 1996. Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its developmental mutants. J. Bacteriol. 178, 3785–3790.

    CAS  PubMed  Google Scholar 

  • Silmann, N.J., N.G. Carr, and N.H. Mann. 1995. ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis strain PCC6803. J. Bacteriol. 177, 3527–3533.

    Google Scholar 

  • Sugawara, K., N. Dohmae, K. Kasai, H. Saido-Sakanaka, S. Okamoto, K. Takio, and K. Ochi. 2002. Isolation and identification of novel ADP-ribosylated proteins from Streptomyces coelicolor A3(2). Biosci. Biotechnol. Biochem. 66, 2292–2296.

    Article  CAS  PubMed  Google Scholar 

  • Takamura-Enya, T., M. Watanabe, Y. Totsuka, T. Kanazawa, Y. Matsushima-Hibiya, K. Koyama, T. Sugimura, and K. Wakabayashi. 2001. Mono(ADP-ribosyl)ation of 2*-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proc. Natl. Acad. Sci. USA 98, 12414–12419.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, T.J., J.E. Fraylick, E.M. McGuffie, and J.C. Olson. 1999. ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol. Microbiol. 32, 1054–1064.

    Article  CAS  PubMed  Google Scholar 

  • Woehle, D.L., B.A. Lueddecke, and P.W. Ludden. 1990. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J. Biol. Chem. 23, 13741–13749.

    Google Scholar 

  • Yakunin, A.F. and P.C. Hallenbeck. 2002. AmtB is necessary for NH4 +-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J. Bacteriol. 184, 4081–4088.

    Article  CAS  PubMed  Google Scholar 

  • Zomber, G., S. Reuveny, N. Garti, A. Shafferman, and E. Elhanany. 2005. Effects of spontaneous deamidation on the cytotoxic activity of the Bacillus anthracis protective antigen. J. Biol. Chem. 280, 39897–39906.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Penyige.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penyige, A., Keserű, J., Fazakas, F. et al. Analysis and identification of ADP-ribosylated proteins of Streptomyces coelicolor M145. J Microbiol. 47, 549–556 (2009). https://doi.org/10.1007/s12275-009-0032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0032-y

Keywords

Navigation