Skip to main content
Log in

Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-entropy-oxides (HEOs), a new class of solids that contain five or more elemental species, have attracted increasing interests owing to their unique structures and fascinating physicochemical properties. However, it is a huge challenge to construct various nanostructured, especially low-dimensional nanostructured HEOs under the high temperature synthetic conditions. Herein, a facile strategy using glucose-urea deep eutectic solvent (DES) as both a solvent and the carbon source of structure-directed template is proposed for the synthesis of various HEOs with two-dimentional (2D) nanonets and one-dimentional (1D) nanowires, including rock-salt (Co, Cu, Mg, Ni, Zn)O, spinel (Co, Cr, Fe, Mn, Ni)3O4, and perovskite La(Co, Cr, Fe, Mn, Ni)O3. The as-prepared HEOs possessed five or more uniformly dispersed metal elements, large specific surface areas (more than 25 m2·g−1), and a pure single-phase structure. In addition, high cooling rate (cooling in air or liq-N2-quenching) was indispensable to obtain a single-phase rock-salt (Co, Cu, Mg, Ni, Zn)O because of phase separation caused by copper. By taking advantage of unique features of HEOs, rock-salt (Co, Cu, Mg, Ni, Zn)O can function as a promising candidate for lithium-ion batteries (LIBs) anode material, which achieved excellent cycling stability. This work provides a feasible synthetic strategy for low-dimensional hierarchical HEOs, which creates new opportunities for the stable HEOs being highly active functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lei, Z. F.; Liu, X. J.; Wang, H.; Wu, Y.; Jiang, S. H.; Lu, Z. P. Development of advanced materials via entropy engineering. Scr. Mater. 2019, 165, 164–169.

    Article  CAS  Google Scholar 

  2. Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

    Article  CAS  Google Scholar 

  3. Chen, Z. J.; Zhang, T.; Gao, X. Y.; Huang, Y. J.; Qin, X. H.; Wang, Y. F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L. et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv. Mater. 2021, 33, 2101845.

    Article  CAS  Google Scholar 

  4. Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

    Article  Google Scholar 

  5. Jin, T.; Sang, X. H.; Unocic, R. R.; Kinch, R. T.; Liu, X. F.; Hu, J.; Liu, H. L.; Dai, S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 2018, 30, 1707512.

    Article  Google Scholar 

  6. Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.

    Article  CAS  Google Scholar 

  7. Fu, M. S.; Ma, X.; Zhao, K. N.; Li, X.; Su, D. High-entropy materials for energy-related applications. iScience 2021, 24, 102177.

    Article  CAS  Google Scholar 

  8. Yuan, Y.; Wu, Y.; Yang, Z.; Liang, X.; Lei, Z. F.; Huang, H. L.; Wang, H.; Liu, X. J.; An, K.; Wu, W. et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019, 7, 225–231.

    Article  CAS  Google Scholar 

  9. Singh, A.; Basha, D. A.; Matsushita, Y.; Tsuchiya, K.; Lu, Z. P.; Nieh, T. G.; Mukai, T. Domain structure and lattice effects in a severely plastically deformed CoCrFeMnNi high entropy alloy. J. Alloys Compd. 2020, 812, 152028.

    Article  CAS  Google Scholar 

  10. Lee, D. H.; Lee, J. A.; Zhao, Y. K.; Lu, Z. P.; Suh, J. Y.; Kim, J. Y.; Ramamurty, U.; Kawasaki, M.; Langdon, T. G.; Jang, J. I. Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis. Acta Mater. 2017, 140, 443–451.

    Article  CAS  Google Scholar 

  11. Chen, K. P.; Pei, X. T.; Tang, L.; Cheng, H. R.; Li, Z. M.; Li, C. W.; Zhang, X. W.; An, L. N. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 2018, 38, 4161–4164.

    Article  CAS  Google Scholar 

  12. Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018, 216, 32–36.

    Article  Google Scholar 

  13. Sarkar, A.; Djenadic, R.; Wang, D.; Hein, C.; Kautenburger, R.; Clemens, O.; Hahn, H. Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 2018, 38, 2318–2327.

    Article  CAS  Google Scholar 

  14. Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

    Article  CAS  Google Scholar 

  15. Dippo, O. F.; Mesgarzadeh, N.; Harrington, T. J.; Schrader, G. D.; Vecchio, K. S. Bulk high-entropy nitrides and carbonitrides. Sci. Rep. 2020, 10, 21288.

    Article  CAS  Google Scholar 

  16. Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

    Article  CAS  Google Scholar 

  17. McCormick, C. R.; Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 2021, 143, 1017–1023.

    Article  CAS  Google Scholar 

  18. Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.

    Article  CAS  Google Scholar 

  19. Qiao, H. Y.; Wang, X. Z.; Dong, Q.; Zheng, H. K.; Chen, G.; Hong, M.; Yang, C. P.; Wu, M. L.; He, K.; Hu, L. B. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 2021, 86, 106029.

    Article  CAS  Google Scholar 

  20. Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.

    Article  CAS  Google Scholar 

  21. Gild, J.; Zhang, Y. Y.; Harrington, T.; Jiang, S. C.; Hu, T.; Quinn, M. C.; Mellor, W. M.; Zhou, N. X.; Vecchio, K.; Luo, J. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 2016, 6, 37946.

    Article  CAS  Google Scholar 

  22. Liu, D.; Wen, T. Q.; Ye, B. L.; Chu, Y. H. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 2019, 167, 110–114.

    Article  CAS  Google Scholar 

  23. Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

    Article  Google Scholar 

  24. Zheng, Y. N.; Yi, Y. K.; Fan, M. H.; Liu, H. Y.; Li, X.; Zhang, R.; Li, M. T.; Qiao, Z. A. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 2019, 23, 678–683.

    Article  Google Scholar 

  25. Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

    Article  CAS  Google Scholar 

  26. Mao, A. Q.; Quan, F.; Xiang, H. Z.; Zhang, Z. G.; Kuramoto, K.; Xia, A. L. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 2019, 1194, 11–18.

    Article  CAS  Google Scholar 

  27. Bérardan, D.; Franger, S.; Dragoe, D.; Meena, A. K.; Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL-Rapid Res. Lett. 2016, 10, 328–333.

    Article  Google Scholar 

  28. Ghigna, P.; Airoldi, L.; Fracchia, M.; Callegari, D.; Anselmi-Tamburini, U.; D’Angelo, P.; Pianta, N.; Ruffo, R.; Cibin, G.; de Souza, D. O. et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study. ACS Appl. Mater. Interfaces 2020, 12, 50344–50354.

    Article  CAS  Google Scholar 

  29. Nguyen, T. X.; Patra, J.; Chang, J. K.; Ting, J. M. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance. J. Mater. Chem. A 2020, 8, 18963–18973.

    Article  CAS  Google Scholar 

  30. Bérardan, D.; Franger, S.; Meena, A. K.; Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 2016, 4, 9536–9541.

    Article  Google Scholar 

  31. Mao, A. Q.; Xiang, H. Z.; Zhang, Z. G.; Kuramoto, K.; Yu, H. Y.; Ran, S. L. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. J. Magn. Magn. Mater. 2019, 484, 245–252.

    Article  CAS  Google Scholar 

  32. Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V. S. K.; Kübel, C.; Bhattacharya, S. S.; Gandhi, A. S.; Hahn, H. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 2017, 5, 102–109.

    Article  CAS  Google Scholar 

  33. Sarkar, A.; Djenadic, R.; Usharani, N. J.; Sanghvi, K. P.; Chakravadhanula, V. S. K.; Gandhi, A. S.; Hahn, H.; Bhattacharya, S. S. Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 2017, 37, 747–754.

    Article  CAS  Google Scholar 

  34. Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 19503–19509.

    Article  CAS  Google Scholar 

  35. Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

    Article  CAS  Google Scholar 

  36. Cong, L. N.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.

    Article  Google Scholar 

  37. Tan, X. H.; Guo, L. M.; Liu, S. N.; Wu, J. X.; Zhao, T. Q.; Ren, J. C.; Liu, Y. L.; Kang, X. H.; Wang, H. F.; Sun, L. F. et al. A general one-pot synthesis strategy of 3D porous hierarchical networks crosslinked by monolayered nanoparticles interconnected nanoplates for lithium ion batteries. Adv. Funct. Mater. 2019, 29, 1903003.

    Article  Google Scholar 

  38. Cao, H. L.; Zhou, X. F.; Zheng, C.; Liu, Z. P. Two-dimensional porous micro/nano metal oxides templated by graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 11984–11990.

    Article  CAS  Google Scholar 

  39. Green, D. C.; Glatzel, S.; Collins, A. M.; Patil, A. J.; Hall, S. R. A new general synthetic strategy for phase-pure complex functional materials. Adv. Mater. 2012, 24, 5767–5772.

    Article  CAS  Google Scholar 

  40. Rong, K.; Wei, J. L.; Huang, L.; Fang, Y. X.; Dong, S. J. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale 2020, 12, 20719–20725.

    Article  CAS  Google Scholar 

  41. Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.

    Article  CAS  Google Scholar 

  42. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71.

    Google Scholar 

  43. Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem., Int. Ed. 2013, 52, 3074–3085.

    Article  CAS  Google Scholar 

  44. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285.

    Article  CAS  Google Scholar 

  45. Wang, Q.; Dong, B. H.; Zhao, Y. Q.; Huang, F.; Xie, J. F.; Cui, G. W.; Tang, B. Controllable green synthesis of crassula peforata-like TiO2 with high photocatalytic activity based on deep eutectic solvent (DES). Chem. Eng. J. 2018, 348, 811–819.

    Article  CAS  Google Scholar 

  46. Wagle, D. V.; Zhao, H.; Baker, G. A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res. 2014, 47, 2299–2308.

    Article  CAS  Google Scholar 

  47. Abo-Hamad, A.; Hayyan, M.; AlSaadi, M. A.; Hashim, M. A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015, 273, 551–567.

    Article  CAS  Google Scholar 

  48. Ge, X.; Gu, C. D.; Wang, X. L.; Tu, J. P. Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: Challenges, opportunities, and future vision. J. Mater. Chem. A 2017, 5, 8209–8229.

    Article  CAS  Google Scholar 

  49. Liu, Y.; Friesen, J. B.; McAlpine, J. B.; Lankin, D. C.; Chen, S. N.; Pauli, G. F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018, 81, 679–690.

    Article  CAS  Google Scholar 

  50. Sushil, J.; Kumar, A.; Gautam, A.; Ahmad, I. High entropy phase evolution and fine structure of five component oxide (Mg, Co, Ni, Cu, Zn)O by citrate gel method. Mater. Chem. Phys. 2021, 259, 124014.

    Article  CAS  Google Scholar 

  51. Berardan, D.; Meena, A. K.; Franger, S.; Herrero, C.; Dragoe, N. Controlled jahn-teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 2017, 704, 693–700.

    Article  CAS  Google Scholar 

  52. Dragoe, N.; Bérardan, D. Order emerging from disorder. Science 2019, 366, 573–574.

    Article  CAS  Google Scholar 

  53. Pitike, K. C.; Santosh, K. C.; Eisenbach, M.; Bridges, C. A.; Cooper, V. R. Predicting the phase stability of multicomponent high-entropy compounds. Chem. Mater. 2020, 32, 7507–7515.

    Article  CAS  Google Scholar 

  54. Zhou, Y. L.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X. Y.; Li, Y. L.; Du, R.; Yan, X. S.; Sun, X. Q.; Dong, C. F. et al. Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 2020, 13, 691–700.

    Article  CAS  Google Scholar 

  55. Song, H. Q.; Liu, F.; Luo, M. S. Insights into the stable and fast lithium storage performance of oxygen-deficient LiV3O8 nanosheets. Nano Res. 2021, 14, 814–822.

    Article  CAS  Google Scholar 

  56. Chen, H.; Yang, D.; Zhuang, X.; Chen, D.; Liu, W.; Zhang, Q.; Hng, H. H.; Rui, X.; Yan, Q.; Huang, S. Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Res. 2020, 13, 1867–1874.

    Article  CAS  Google Scholar 

  57. Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4, 972–996.

    Article  CAS  Google Scholar 

  58. Qiu, N.; Chen, H.; Yang, Z. M.; Sun, S.; Wang, Y.; Cui, Y. H. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 2019, 777, 767–774.

    Article  CAS  Google Scholar 

  59. Lökçü, E.; Toparli, Ç.; Anik, M. Electrochemical performance of (MgCoNiZn)1−xLixC) high-entropy oxides in lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 23860–23866.

    Article  Google Scholar 

  60. Wang, D.; Jiang, S. D.; Duan, C. Q.; Mao, J.; Dong, Y.; Dong, K. Z.; Wang, Z. Y.; Luo, S. H.; Liu, Y. G.; Qi, X. W. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 2020, 844, 156158.

    Article  CAS  Google Scholar 

  61. Wang, Q. S.; Sarkar, A.; Li, Z. Y.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 2019, 100, 121–125.

    Article  Google Scholar 

  62. Wang, J. B.; Cui, Y. Y.; Wang, Q. S.; Wang, K.; Huang, X. H.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S. et al. Lithium containing layered high entropy oxide structures. Sci. Rep. 2020, 10, 18430.

    Article  CAS  Google Scholar 

  63. Wang, Q. S.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T. et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced li-ion batteries. Energy Environ. Sci. 2019, 12, 2433–2442.

    Article  CAS  Google Scholar 

  64. Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.

    Article  CAS  Google Scholar 

  65. Fan, X. L.; Shao, J.; Xiao, X. Z.; Chen, L. X.; Wang, X. H.; Li, S. Q.; Ge, H. W. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14641–14648.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nationla Key R&D Program of China (No. 2016YFA0203203) and the National Natural Science Foundation of China (Nos. 22074137 and 21721003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youxing Fang or Shaojun Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Rong, K., Li, X. et al. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 15, 2756–2763 (2022). https://doi.org/10.1007/s12274-021-3860-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3860-7

Keywords

Navigation