Skip to main content
Log in

Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemoselective hydrodeoxygenation of vanillin is of great importance in converting biomass into high value-added chemicals. Herein, we describe a facile photochemical route to access palladium single atoms and clusters supported on silicoaluminophosphate-31 (SAPO-31) as a highly active, chemoselective, and reusable catalyst for hydrodeoxygenation of vanillin. Characterizations by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and CO-absorbed diffuse reflectance infrared Fourier transform spectroscopy reveal the atomically dispersed palladium single atoms and clusters are loosely bonded and randomly dispersed, without forming strong palladium-palladium metallic bonding, over the SAPO-31 support. This catalyst, with a full metal availability to the reactants, exhibits exceptional catalytic activity (TOF: 3,000 h−1, Yield: > 99%) in the hydrodeoxygenation of vanillin toward 2-methoxy-4-methylphenol (MMP) under mild conditions (1 atm, 80 °C, 30 min), along with excellent stability, scalability (up to 100-fold), and wide substrate scope. The superior catalytic performance can be attributed to the synergistic effect of the positively charged palladium single atoms and fully exposed clusters, as well as the strong metal-support interactions. This work may offer a new avenue for the design and synthesis of fully exposed metal catalysts with targeted functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, L. C.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244–263.

    Article  CAS  Google Scholar 

  2. Morgan, K.; Goguet, A.; Hardacre, C. Metal redispersion strategies for recycling of supported metal catalysts: A perspective. ACS Catal. 2015, 5, 3430–3445.

    Article  CAS  Google Scholar 

  3. Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B. C.; Rahimpour, M. R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ. Sci. 2014, 7, 103–129.

    Article  CAS  Google Scholar 

  4. Singh, A. K.; Jang, S.; Kim, J. Y.; Sharma, S.; Basavaraju, K. C.; Kim, M. G.; Kim, K. R.; Lee, J. S.; Lee, H. H.; Kim, D. P. One-pot defunctionalization of lignin-derived compounds by dual-functional Pd50Ag50/Fe3O4/N-rGo catalyst. ACS Catal. 2015, 5, 6964–6972.

    Article  CAS  Google Scholar 

  5. Yue, X. K.; Zhang, L. H.; Sun, L. X.; Gao, S. T.; Gao, W.; Cheng, X.; Shang, N. Z.; Gao, Y. J.; Wang, C. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst. Appl. Catal. B: Environ. 2021, 293, 120243.

    Article  CAS  Google Scholar 

  6. Nie, R. F.; Yang, H. H.; Zhang, H. F.; Yu, X. L.; Lu, X. H.; Zhou, D.; Xia, Q. H. Mild-temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles. Green Chem. 2017, 19, 3126–3134.

    Article  CAS  Google Scholar 

  7. Procházková, D.; Zámostný, P.; Bejblová, M.; Červený, L.; Čejka, J. Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts. Appl. Catal. A: Gen. 2007, 332, 56–64.

    Article  CAS  Google Scholar 

  8. Huang, H.; Zong, R.; Li, H. Synergy effects between oxygen groups and defects in hydrodeoxygenation of biomass over a carbon nanosphere supported Pd catalyst. ACS Sustainable Chem. Eng. 2020, 8, 15998–16009.

    Article  CAS  Google Scholar 

  9. Zhang, L. K.; Shang, N. Z.; Gao, S. T.; Wang, J. M.; Meng, T.; Du, C. C.; Shen, T. D.; Huang, J. Y.; Wu, Q. H.; Wang, H. J. et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS Catal. 2020, 10, 8672–8682.

    Article  CAS  Google Scholar 

  10. Xu, X.; Li, Y.; Gong, Y. T.; Zhang, P. P.; Li, H. R.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012, 134, 16987–16990.

    Article  CAS  Google Scholar 

  11. Nie, R. F.; Peng, X. L.; Zhang, H. F.; Yu, X. L.; Lu, X. H.; Zhou, D.; Xia, Q. H. Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catal. Sci. Technol. 2017, 7, 627–634.

    Article  CAS  Google Scholar 

  12. Yang, H. H.; Nie, R. F.; Xia, W.; Yu, X. L.; Jin, D. F.; Lu, X. H.; Zhou, D.; Xia, Q. H. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid. Green Chem. 2017, 19, 5714–5722.

    Article  CAS  Google Scholar 

  13. Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  Google Scholar 

  14. Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

    Article  CAS  Google Scholar 

  15. Li, Z. J.; Wang, D. H.; Wu, Y.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

    Article  CAS  Google Scholar 

  16. Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

    Article  CAS  Google Scholar 

  17. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  18. Li, Z. J.; Zhang, M. Y.; Zhang, L. L.; Dong, X. L.; Leng, L. P.; Horton, J. H.; Wang, J. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Res. in press, DOI: https://doi.org/10.1007/s12274-021-3662-y.

  19. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  20. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  21. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  22. Zhao, C.; Yu, H. Z.; Wang, J.; Che, W.; Li, Z. J.; Yao, T.; Yan, W. S.; Chen, M.; Yang, J.; Wei, S. Q. et al. A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. Mater. Chem. Front. 2018, 2, 1317–1322.

    Article  CAS  Google Scholar 

  23. Zhao, Y. F.; Zhou, H.; Chen, W. X.; Tong, Y. J.; Zhao, C.; Lin, Y.; Jiang, Z.; Zhang, Q. W.; Xue, Z. G.; Cheong, W. C. et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J. Am. Chem. Soc. 2019, 141, 10590–10594.

    Article  CAS  Google Scholar 

  24. Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

    Article  CAS  Google Scholar 

  25. Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

    Article  CAS  Google Scholar 

  26. Corma, A.; Concepción, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; López-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.

    Article  CAS  Google Scholar 

  27. Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

    Article  CAS  Google Scholar 

  28. Kwon, G.; Ferguson, G. A.; Heard, C. J.; Tyo, E. C.; Yin, C. R.; DeBartolo, J.; Seifert, S.; Winans, R. E.; Kropf, A. J.; Greeley, J. et al. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 2013, 7, 5808–5817.

    Article  CAS  Google Scholar 

  29. Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

    Article  CAS  Google Scholar 

  30. Ding, S. P.; Chen, H. A.; Mekasuwandumrong, O.; Hülsey, M. J.; Fu, X. P.; He, Q.; Panpranot, J.; Yang, C. M.; Yan, N. High-temperature flame spray pyrolysis induced stabilization of Pt singleatom catalysts. Appl. Catal. B: Environ. 2021, 281, 119471.

    Article  CAS  Google Scholar 

  31. Li, J. C.; Li, M.; Li, J.; Wang, S.; Li, G. B.; Liu, X. Hydrodechlorination and deep hydrogenation on single-palladium-atom-based heterogeneous catalysts. Appl. Catal. B: Environ. 2021, 282, 119518.

    Article  CAS  Google Scholar 

  32. Li, J.; Zhou, Q. Y.; Yue, M. F.; Chen, S. G.; Deng, J. H.; Ping, X. Y.; Li, Y.; Li, J.; Liao, Q.; Shao, M. H. et al. Cross-linked multiatom Pt catalyst for highly efficient oxygen reduction catalysis. Appl. Catal. B: Environ. 2021, 284, 119728.

    Article  CAS  Google Scholar 

  33. Liu, H. B.; Xu, X. C.; Xu, H. X.; Wang, S. T.; Niu, Z. Q.; Jia, Q. H.; Yang, L.; Cao, R.; Zheng, L. R.; Cao, D. P. Dual active site tandem catalysis of metal hydroxyl oxides and single atoms for boosting oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 297, 120451.

    Article  CAS  Google Scholar 

  34. Liu, W.; Yang, Y. S.; Chen, L. F.; Xu, E. Z.; Xu, J. M.; Hong, S.; Zhang, X.; Wei, M. Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural. Appl. Catal. B: Environ. 2021, 282, 119569.

    Article  CAS  Google Scholar 

  35. Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

    Article  CAS  Google Scholar 

  36. Perez-Aguilar, J. E.; Chen, C. Y.; Hughes, J. T.; Fang, C. Y.; Gates, B. C. Isostructural atomically dispersed rhodium catalysts supported on SAPO-37 and on HY zeolite. J. Am. Chem. Soc. 2020, 142, 11474–11485.

    Article  CAS  Google Scholar 

  37. Sun, Q. M.; Wang, N.; Zhang, T. J.; Bai, R. S.; Mayoral, A.; Zhang, P.; Zhang, Q. H.; Terasaki, O.; Yu, J. H. Zeolite-encaged singleatom rhodium catalysts: Highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem., Int. Ed. 2019, 58, 18570–18576.

    Article  CAS  Google Scholar 

  38. Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

    Article  CAS  Google Scholar 

  39. Ma, J. W.; Li, Y. H.; Liu, J.; Zhao, Z.; Xu, C. M.; Wei, Y. C.; Song, W. Y.; Sun, Y. Q.; Zhang, X. Cu-SAPO-18 for NH3-SCR reaction: The effect of different aging temperatures on Cu2+ active sites and catalytic performances. Ind. Eng. Chem. Res. 2019, 58, 2389–2395.

    Article  CAS  Google Scholar 

  40. Shen, B. Y.; Chen, X.; Fan, X. Y.; Xiong, H.; Wang, H. Q.; Qian, W. Z.; Wang, Y.; Wei, F. Resolving atomic SAPO-34/18 intergrowth architectures for methanol conversion by identifying light atoms and bonds. Nat. Commun. 2021, 12, 2212.

    Article  CAS  Google Scholar 

  41. Sun, Q. M.; Xie, Z. K.; Yu, J. H. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl. Sci. Rev. 2018, 5, 542–558.

    Article  CAS  Google Scholar 

  42. Wang, C.; Yang, M.; Tian, P.; Xu, S. T.; Yang, Y.; Wang, D. H.; Yuan, Y. Y.; Liu, Z. M. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A 2015, 3, 5608–5616.

    Article  CAS  Google Scholar 

  43. Wang, J.; Kuang, Q.; Su, X. F.; Lu, X. W.; Leng, L. P.; Zhang, M. Y.; Guo, C. M.; Li, T.; Xu, Q.; Sun, S. H. et al. Isolated palladium atoms dispersed on silicoaluminophosphate-31 (SAPO-31) for the semihydrogenation of alkynes. ACS Appl. Nano Mater. 2021, 4, 861–868.

    Article  CAS  Google Scholar 

  44. Sun, Q. M.; Wang, N.; Bai, R. S.; Hui, Y.; Zhang, T. J.; Do, D. A.; Zhang, P.; Song, L. J.; Miao, S.; Yu, J. H. Synergetic effect of ultrasmall metal clusters and zeolites promoting hydrogen generation. Adv. Sci. 2019, 6, 1802350.

    Article  CAS  Google Scholar 

  45. Fu, F. Y.; Xiang, J.; Cheng, H.; Cheng, L. J.; Chong, H. B.; Wang, S. X.; Li, P.; Wei, S. Q.; Zhu, M. Z.; Li, Y. D. A robust and efficient Pd3 cluster catalyst for the suzuki reaction and its odd mechanism. ACS Catal. 2017, 7, 1860–1867.

    Article  CAS  Google Scholar 

  46. Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

    Article  CAS  Google Scholar 

  47. Wang, D. X.; Liu, J. C.; Cheng, X. S.; Kang, X.; Wu, A. P.; Tian, C. G.; Fu, H. G. Trace Pt clusters dispersed on SAPO-11 promoting the synergy of metal sites with acid sites for high-effective hydroisomerization of n-alkanes. Small Methods 2019, 3, 1800510.

    Article  CAS  Google Scholar 

  48. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    Article  CAS  Google Scholar 

  49. Mondelli, C.; Gözaydın, G.; Yan, N.; Pérez-Ramírez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 2020, 49, 3764–3782.

    Article  CAS  Google Scholar 

  50. Su, Y. Q.; Liu, J. X.; Filot, I. A. W.; Hensen, E. J. M. Theoretical study of ripening mechanisms of Pd clusters on ceria. Chem. Mater. 2017, 29, 9456–9462.

    Article  CAS  Google Scholar 

  51. Hu, F. L.; Leng, L. P.; Zhang, M. Y.; Chen, W. X.; Yu, Y. L.; Wang, J.; Horton, J. H.; Li, Z. J. Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions. ACS Appl. Mater. Interfaces 2020, 12, 54146–54154.

    Article  CAS  Google Scholar 

  52. Chen, Q. Z.; Yang, Y.; Luo, H.; Liu, Z. H.; Tong, Z. F.; Tao, C. Y.; Du, J. Ce regulated surface properties of Mn/SAPO-34 for improved NH3-SCR at low temperature. RSC Adv. 2020, 10, 40047–40054.

    Article  CAS  Google Scholar 

  53. Wang, P. L.; Yan, L. J.; Gu, Y. D.; Kuboon, S.; Li, H. R.; Yan, T. T.; Shi, L. Y.; Zhang, D. S. Poisoning-resistant NOx reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts. Environ. Sci. Technol. 2020, 54, 6396–6405.

    Article  CAS  Google Scholar 

  54. Raveendra, G.; Li, C. M.; Cheng, Y.; Meng, F. H.; Li, Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts. New J. Chem. 2018, 42, 4419–4431.

    Article  CAS  Google Scholar 

  55. Chen, X. S.; Jiang, R. L.; Zhou, Z. H.; Wang, X. W. Synthesis of SAPO-34 zeolite from laponite and its application in the MTO reaction. Eur. J. Inorg. Chem. 2020, 22, 2170–2176.

    Article  CAS  Google Scholar 

  56. Hu, L. Q.; Cheng, J.; Li, Y. N.; Liu, J. Z.; Zhang, L.; Zhou, J. H.; Cen, K. F. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes. Appl. Surf. Sci. 2017, 410, 249–258.

    Article  CAS  Google Scholar 

  57. Lou, Y.; Cai, Y. F.; Hu, W. D.; Wang, L.; Dai, Q. G.; Zhan, W. C.; Guo, Y. L.; Hu, P.; Cao, X. M.; Liu, J. Y. et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020, 10, 6094–6101.

    Article  CAS  Google Scholar 

  58. Zhu, M. M.; Du, X. L.; Zhao, Y.; Mei, B. B.; Zhang, Q.; Sun, F. F.; Jiang, Z.; Liu, Y. M.; He, H. Y.; Cao, Y. Ring-opening transformation of 5-hydroxymethylfurfural using a golden single-atomic-site palladium catalyst. ACS Catal. 2019, 9, 6212–6222.

    Article  CAS  Google Scholar 

  59. Liu, Y. W.; Li, Z.; Yu, Q. Y.; Chen, Y. F.; Chai, Z. W.; Zhao, G. F.; Liu, S. J.; Cheong, W. C.; Pan, Y.; Zhang, Q. H. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 2019, 141, 9305–9311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the China Postdoctoral Science Foundation (Nos. 2019M661247 and 2020T130091), Postdoctoral Science Foundation of Heilongjiang Province (LBH-Z19047), Scientific Research Foundation for Returned Scholars of Heilongjiang Province of China (719900091), and Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wu or Zhijun Li.

Electronic Supplementary Material

12274_2021_3857_MOESM1_ESM.pdf

Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Guo, C., Zhang, M. et al. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Res. 14, 4347–4355 (2021). https://doi.org/10.1007/s12274-021-3857-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3857-2

Keywords

Navigation