Skip to main content
Log in

Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way. Recently, we developed a solar control of magnetism, allowing the magnetic moment to be manipulated by sunlight instead of the magnetic field, current, or laser. Here, binary and ternary photoactive systems with different photon-to-electron conversions are proposed. The photovoltaic/magnetic heterostructures with a ternary system induce larger magnetic changes due to higher short current density (JSC) (20.92 mA·cm−2) compared with the binary system (11.94 mA·cm−2). During the sunlight illumination, ferromagnetic resonance (FMR) shift increases by 80% (from 169.52 to 305.48 Oe) attributed to enhanced photo-induced electrons doping, and the variation of saturation magnetization (MS) is also amplified by 14% (from 9.9% to 11.3%). Furthermore, photovoltaic performance analysis and the transient absorption (TA) spectra indicate that the current density plays a major role in visible light manipulating magnetism. These findings clarify the laws of sunlight control of magnetism and lay the foundation for the next generation solar-driven magneto-optical memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fina, I.; Dix, N.; Menéndez, E.; Crespi, A.; Foerster, M.; Aballe, L.; Sánchez, F.; Fontcuberta, J. Flexible antiferromagnetic FeRh tapes as memory elements. ACS Appl. Mater. Interfaces 2020, 12, 15389–15395.

    Article  CAS  Google Scholar 

  2. Yuan, J. S.; Lin, J.; Alasad, Q.; Taheri, S. Ultra-low-power design and hardware security using emerging technologies for internet of things. Electronics 2017, 6, 67.

    Article  Google Scholar 

  3. Jang, B. K.; Lee, J. H.; Chu, K.; Sharma, P.; Kim, G. Y.; Ko, K. T.; Kim, K. E.; Kim, Y. J.; Kang, K.; Jane, H. B. et al. Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point. Nat. Phys. 2017, 13, 189–196.

    Article  CAS  Google Scholar 

  4. Náfrádi, B.; Szirmai, P.; Spina, M.; Pisoni, A.; Mettan, X.; Nemes, N. M.; Forró, L.; Horváth, E. Tuning ferromagnetism at room temperature by visible light. Proc. Natl. Acad. Sci. USA 2020, 117, 6417–6423.

    Article  Google Scholar 

  5. Zhao, S. S.; Zhou, Z. Y.; Li, C. L.; Peng, B.; Hu, Z. Q.; Liu, M. Low-voltage control of (Co/Pt)x perpendicular magnetic anisotropy heterostructure for flexible spintronics. ACS Nano 2018, 12, 7167–7173.

    Article  CAS  Google Scholar 

  6. Molinari, A.; Hahn, H.; Kruk, R. Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv. Mater. 2018, 30, 1703908.

    Article  Google Scholar 

  7. Liu, M.; Howe, B. M.; Grazulis, L.; Mahalingam, K.; Nan, T. X.; Sun, N. X.; Brown, G. J. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 2013, 25, 4886–4892.

    Article  CAS  Google Scholar 

  8. Liu, M.; Obi, O.; Lou, J.; Chen, Y. J.; Cai, Z. H.; Stoute, S.; Espanol, M.; Lew, M.; Situ, X. D.; Ziemer, K. S. et al. Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 2009, 19, 1826–1831.

    Article  Google Scholar 

  9. Zhao, Y. F.; Zhao, S. S.; Wang, L.; Zhou, Z. Y.; Liu, J. X.; Min, T.; Peng, B.; Hu, Z. Q.; Jin, S. Y.; Liu, M. Sunlight control of interfacial magnetism for solar driven spintronic applications. Adv. Sci. 2019, 6, 1901994.

    Article  CAS  Google Scholar 

  10. Weil, J. A. A review of electron-spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys. Chem. Miner. 1984, 10, 149–165.

    Article  CAS  Google Scholar 

  11. Kwak, W. Y.; Kwon, J. H.; Grünberg, P.; Han, S. H.; Cho, B. K. Current-induced magnetic switching with spin-orbit torque in an interlayer-coupled junction with a ta spacer layer. Sci. Rep. 2018, 8, 3826.

    Article  Google Scholar 

  12. Mangin, S.; Ravelosona, D.; Katine, J. A.; Carey, M. J.; Terris, B. D.; Fullerton, E. E. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 2006, 5, 210–215.

    Article  CAS  Google Scholar 

  13. Zhang, L.; Hou, W. X.; Dong, G. H.; Zhou, Z. Y.; Zhao, S. S.; Hu, Z. Q.; Ren, W.; Chen, M. F.; Nan, C. W.; Ma, J. et al. Low voltage induced reversible magnetoelectric coupling in Fe3O4 thin films for voltage tunable spintronic devices. Mater. Horiz. 2018, 5, 991–999.

    Article  CAS  Google Scholar 

  14. Xue, X.; Dong, G. H.; Zhou, Z. Y.; Xiang, D.; Hu, Z. Q.; Ren, W.; Ye, Z. G.; Chen, W.; Jiang, Z. D.; Liu, M. Voltage control of two-magnon scattering and induced anomalous magnetoelectric coupling in Ni-Zn ferrite. ACS Appl. Mater. Interfaces 2017, 9, 43188–43196.

    Article  CAS  Google Scholar 

  15. Lou, J.; Liu, M.; Reed, D.; Ren, Y. H.; Sun, N. X. Giant electric field tuning of magnetism in novel multiferroic FeGaB/lead zinc niobate-lead titanate (PZN-PT) heterostructures. Adv. Mater. 2009, 21, 4711–4715.

    Article  CAS  Google Scholar 

  16. Zhao, S. S.; Wang, L.; Zhou, Z. Y.; Li, C. L.; Dong, G. H.; Zhang, L.; Peng, B.; Min, T.; Hu, Z. Q.; Ma, J. et al. Ionic liquid gating control of spin reorientation transition and switching of perpendicular magnetic anisotropy. Adv. Mater. 2018, 30, 1801639.

    Article  Google Scholar 

  17. Yang, Q.; Zhou, Z. Y.; Wang, L. Q.; Zhang, H. J.; Cheng, Y. X.; Hu, Z. Q.; Peng, B.; Liu, M. Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv. Mater. 2018, 30, 1800449.

    Article  Google Scholar 

  18. Yang, Q.; Wang, L.; Zhou, Z. Y.; Wang, L. Q.; Zhang, Y. J.; Zhao, S. S.; Dong, G. H.; Cheng, Y. X.; Min, T.; Hu, Z. Q. et al. Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers. Nat. Commun. 2018, 9, 991.

    Article  Google Scholar 

  19. Guan, M. M.; Wang, L.; Zhao, S. S.; Zhou, Z. Y.; Dong, G. H.; Su, W.; Min, T.; Ma, J.; Hu, Z. Q.; Ren, W. et al. Ionic modulation of the interfacial magnetism in a bilayer system comprising a heavy metal and a magnetic insulator for voltage-tunable spintronic devices. Adv. Mater. 2018, 30, 1802902.

    Article  Google Scholar 

  20. Zhao, Y. F.; Zhao, S. S.; Wang, L.; Wang, S. P.; Du, Y. J.; Zhao, Y. N.; Jin, S. Y.; Min, T.; Tian, B.; Jiang, Z. D. et al. Photovoltaic modulation of ferromagnetism within a FM metal/P-N junction Si heterostructure. Nanoscale 2021, 13, 272–279.

    Article  CAS  Google Scholar 

  21. Zhao, Y. F.; Zhao, M.; Tian, B.; Jiang, Z. D.; Wang, Y. H.; Liu, M.; Zhou, Z. Y. Enhancing sunlight control of interfacial magnetism by introducing the ZnO layer for electron harvesting. ACS Appl. Mater. Interfaces 2021, 13, 2018–2024.

    Article  CAS  Google Scholar 

  22. Zhou, G.; Li, T. H.; Wu, Y. Y.; Wang, P. F.; Leng, K. M.; Liu, C. C.; Shan, Y.; Liu, L. Z. Light-controlled ferromagnetism in porphyrin functionalized ultrathin FeS nanosheets. Adv. Opt. Mater. 2020, 8, 2000046.

    Article  CAS  Google Scholar 

  23. Zhao, S. S.; Zhao, Y. F.; Tian, B.; Liu, J. X.; Jin, S. Y.; Jiang, Z. D.; Zhou, Z. Y.; Liu, M. Photovoltaic control of ferromagnetism for flexible spintronics. ACS Appl. Mater. Interfaces 2020, 12, 41999–42006.

    Article  CAS  Google Scholar 

  24. Yamada, M.; Kuroda, F.; Tsukahara, M.; Yamada, S.; Fukushima, T.; Sawano, K.; Oguchi, T.; Hamaya, K. Spin injection through energy-band symmetry matching with high spin polarization in atomically controlled ferromagnet/ferromagnet/semiconductor structures. NPG Asia Mater. 2020, 12, 47.

    Article  CAS  Google Scholar 

  25. Sun, X. N.; Vélez, S.; Atxabal, A.; Bedoya-Pinto, A.; Parui, S.; Zhu, X. W.; Llopis, R.; Casanova, F.; Hueso, L. E. A molecular spin-photovoltaic device. Science 2017, 357, 677–680.

    Article  CAS  Google Scholar 

  26. Cabero, M.; Nagy, K.; Gallego, F.; Sander, A.; Rio, M.; Cuellar, F. A.; Tornos, J.; Hernandez-Martin, D.; Nemes, N. M.; Mompean, F. et al. Modified magnetic anisotropy at LaCoO3/La0.7Sr0.3MnO3 interfaces. APL Mater. 2017, 5, 096104.

    Article  Google Scholar 

  27. Náfrádi, B.; Szirmai, P.; Spina, M.; Lee, H.; Yazyev, O. V.; Arakcheeva, A.; Chernyshov, D.; Gibert, M.; Forró, L.; Horváth, E. Optically switched magnetism in photovoltaic perovskite CH3NH3 (Mn: Pb)I3. Nat. Commun. 2016, 7, 13406.

    Article  Google Scholar 

  28. Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.

    Article  Google Scholar 

  29. Stoltzfus, D. M.; Donaghey, J. E.; Armin, A.; Shaw, P. E.; Burn, P. L.; Meredith, P. J. Charge generation pathways in organic solar cells: Assessing the contribution from the electron acceptor. Chem. Rev. 2016, 116, 12920–12955.

    Article  CAS  Google Scholar 

  30. Gregg, B. A.; Hanna, M. C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 2003, 93, 3605–3614.

    Article  CAS  Google Scholar 

  31. Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698.

    Article  CAS  Google Scholar 

  32. Lu, L. Y.; Kelly, M. A.; You, W.; Yu, L. P. Status and prospects for ternary organic photovoltaics. Nat. Photon. 2015, 9, 491–500.

    Article  CAS  Google Scholar 

  33. An, Q. S.; Zhang, F. J.; Zhang, J.; Tang, W. H.; Deng, Z. B.; Hu, B. Versatile ternary organic solar cells: A critical review. Energy Environ. Sci. 2016, 9, 281–322.

    Article  Google Scholar 

  34. Bonaccorso, F.; Balis, N.; Stylianakis, M. M.; Savarese, M.; Adamo, C.; Gemmi, M.; Pellegrini, V.; Stratakis, E.; Kymakis, E. Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv. Funct. Mater. 2015, 25, 3870–3880.

    Article  CAS  Google Scholar 

  35. Cheng, P.; Li, Y. F.; Zhan, X. W. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 2014, 7, 2005–2011.

    Article  CAS  Google Scholar 

  36. Zhang, J. Q.; Zhao, Y. F.; Fang, J.; Yuan, L.; Xia, B. Z.; Wang, G. D.; Wang, Z. Y.; Zhang, Y. J.; Ma, W.; Yan, W. Enhancing performance of large-area organic solar cells with thick film via ternary strategy. Small 2017, 13, 1700388.

    Article  Google Scholar 

  37. Zhang, J. Q.; Zhang, Y. J.; Fang, J.; Lu, K.; Wang, Z. Y.; Ma, W.; Wei, Z. X. Conjugated polymer-small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 2015, 137, 8176–8183.

    Article  CAS  Google Scholar 

  38. Zhao, Y. F.; Wang, G. D.; Wang, Y. H.; Xiao, T.; Adil, M. A.; Lu, G. H.; Zhang, J. Q.; Wei, Z. X. A sequential slot-die coated ternary system enables efficient flexible organic solar cells. Sol. RRL 2019, 3, 1800333.

    Article  Google Scholar 

  39. Ben Dkhil, S.; Duché, D.; Gaceur, M.; Thakur, A. K.; Aboura, F. B.; Escoubas, L.; Simon, J. J.; Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G. et al. Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells. Adv. Energy Mater. 2014, 4, 1400805.

    Article  Google Scholar 

  40. Guan, M. M.; Wang, L.; Zhao, S. S.; Peng, B.; Su, W.; He, Z. X.; Dong, G. H.; Min, T.; Ma, J.; Hu, Z. Q. et al. Ionic modulation of interfacial magnetism in light metal/ferromagnetic insulator layered nanostructures. Adv. Funct. Mater. 2019, 29, 1805592.

    Article  Google Scholar 

  41. Wang, L.; Wang, X. R.; Min, T.; Xia, K. Charge-induced ferromagnetic phase transition and anomalous hall effect in full d-band nonmagnetic metals. Phys. Rev. B 2019, 99, 224416.

    Article  CAS  Google Scholar 

  42. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952.

    Article  CAS  Google Scholar 

  43. Rolczynski, B. S.; Szarko, J. M.; Son, H. J.; Liang, Y. Y.; Yu, L. P.; Chen, L. X. Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implications in photovoltaic materials design. J. Am. Chem. Soc. 2012, 134, 4142–4152.

    Article  CAS  Google Scholar 

  44. Szarko, J. M.; Rolczynski, B. S.; Lou, S. J.; Xu, T.; Strzalka, J.; Marks, T. J.; Yu, L. P.; Chen, L. X. Photovoltaic function and exciton/charge transfer dynamics in a highly efficient semiconducting copolymer. Adv. Funct. Mater. 2014, 24, 10–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2019YFA0307900 and 2018YFB0407601), the National Natural Science Foundation of China (Nos. 91964109, 11534015, 51802248, 11804266, and 62001366), the National 111 Project of China (No. B14040), the Fundamental Research Funds for the Central Universities (No. xjh012019042), and the China Postdoctoral Science Foundation (Nos. 2018M643636). The authors acknowledge the support from the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies. Z. Y. Z. and M. L. were supported by the China Recruitment Program of Global Youth Experts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Yifan Zhao.

Electronic Supplementary Material

12274_2021_3841_MOESM1_ESM.pdf

Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Wang, S., Wang, L. et al. Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping. Nano Res. 15, 2626–2633 (2022). https://doi.org/10.1007/s12274-021-3841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3841-x

Keywords

Navigation