Skip to main content
Log in

Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Modifying electrocatalysts nanostructures and tuning their electronic properties through defects-oriented synthetic strategies are essential to improve the oxygen evolution reaction (OER) performance of electrocatalysts. Current synthetic strategies about electrocatalysts mainly target the single or double structural defects, while the researches about the synergistic effect of multiple structural defects are rare. In this work, the ultrathin NiFe layered double hydroxide nanosheets with a holey structure, oxygen vacancies and Ni3+ defects on nickel foam (NiFe-LDH-NSs/NF) are prepared by employing a simple and green H2O2-assisted etching method. The synergistic effect of the above three defects leads to the exposure of more active sites and significant improvement of the intrinsic activity. The optimized catalyst exhibits an excellent OER performance with an extraordinarily low overpotential of 170 mV at 10 mA·cm−2 and a small Tafel slope of 39.3 mV·dec−1 in 1 M KOH solution. Density functional theory calculations reveal this OER performance arises from pseudo re-oxidized metal-stable Ni3+ near oxygen vacancies (Ovac), which suppresses 3d-eg of Ni-site and elevates d-band center towards the competitively low electron-transfer barrier. This work provides a new insight to fabricate advanced electrocatalysts for renewable energy conversion technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  Google Scholar 

  2. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 21, 1072–1075.

    Article  Google Scholar 

  3. Sahasrabudhe, A.; Dixit, H.; Majee, R.; Bhattacharyya, S. Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting. Nat. Commun. 2018, 9, 2014.

    Article  Google Scholar 

  4. Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

    Article  Google Scholar 

  5. Ju, S. K.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.

    Article  Google Scholar 

  6. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  CAS  Google Scholar 

  7. Fang, Y.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 2018, 9, 2551.

    Article  Google Scholar 

  8. Concina, I.; Ibupoto, Z. H.; Vomiero, A. Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy Mater. 2017, 7, 1700706.

    Article  Google Scholar 

  9. Jin, H. Y.; Guo, C. X.; Lin, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  Google Scholar 

  10. Weng, B. C.; Xu, F. H.; Wang, C. L.; Meng, W. W.; Grice, C. R.; Yan, Y. F. A layered Na1−xNiyFe1−yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ. Sci. 2017, 10, 121–128.

    Article  CAS  Google Scholar 

  11. Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

    Article  Google Scholar 

  12. Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.

    Article  CAS  Google Scholar 

  13. Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

    Article  CAS  Google Scholar 

  14. Liu, K. L.; Wang, F. M.; He, P.; Shifa, T. A.; Wang, Z. X.; Cheng, Z. Z.; Zhan, X. Y.; He, J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv. Energy Mater. 2018, 8, 1703290.

    Article  Google Scholar 

  15. Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

    Article  CAS  Google Scholar 

  16. Dong, C. Q.; Kou, T. Y.; Gao, H.; Peng, Z. Q.; Zhang, Z. H. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater. 2018, 8, 1701347.

    Article  Google Scholar 

  17. Cao, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Li, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392–9396.

    Article  Google Scholar 

  18. Song, F.; Xie, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  CAS  Google Scholar 

  19. Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.

    Article  CAS  Google Scholar 

  20. Qin, M. L.; Li, S. M.; Zhao, Y. Z.; Lao, C. Y.; Zhang, Z. L.; Liu, L.; Fang, F.; Wu, H. Y.; Jia, B. R.; Liu, Z. W. et al. Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution. Adv. Energy Mater. 2019, 9, 1803060.

    Article  Google Scholar 

  21. Xie, J. F.; Zhang, X. D.; Zhang, H.; Zhang, J. J.; Li, S.; Wang, R. X.; Pan, B. C.; Xie, Y. Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2017, 29, 1604765.

    Article  Google Scholar 

  22. Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

    Article  Google Scholar 

  23. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 128, 5363–5367.

    Article  Google Scholar 

  24. Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

    Article  Google Scholar 

  25. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

    Article  CAS  Google Scholar 

  26. Wan, K.; Luo, J. S.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X. H.; Mao, B. W.; Zhang, X.; Fransaer, J. Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1900315.

    Article  Google Scholar 

  27. Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

    Article  Google Scholar 

  28. Wu, G.; Chen, W. X.; Zheng, X. S.; He, D. P.; Luo, Y. Q.; Wang, X. Q.; Yang, J.; Wu, Y.; Yan, W. S.; Zhuang, Z. B. et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy 2017, 38, 167–174.

    Article  CAS  Google Scholar 

  29. Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

    Article  CAS  Google Scholar 

  30. Cai, Q.; Hong, W. T.; Jian, C. Y.; Liu, W. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation. Nanoscale 2020, 12, 7550–7556.

    Article  CAS  Google Scholar 

  31. Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

    Article  CAS  Google Scholar 

  32. Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. Hierarchically coupled Ni:FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation. ACS Catal. 2019, 9, 5025–5034.

    Article  CAS  Google Scholar 

  33. Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhao, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

    Article  CAS  Google Scholar 

  34. Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

    Article  CAS  Google Scholar 

  35. Stoyanova, R.; Zhecheva, E.; Alcántara, R.; Tirado, J. L. Local coordination of low-spin Ni3+ probes in trigonal LiAlyCo1−yO2 monitored by HF-EPR. J. Phys. Chem. B 2004, 108, 4053–4057.

    Article  CAS  Google Scholar 

  36. Zhang, J. B.; Yin, R. G.; Shao, Q.; Zhu, T.; Huang, X. Q. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 5609–5613.

    Article  CAS  Google Scholar 

  37. Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8, 1703341.

    Article  Google Scholar 

  38. Tang, C.; Chen, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 9483–9487.

    Article  Google Scholar 

Download references

Acknowledgements

We thank financial supports from the National Natural Science Foundation of China (Nos. 21531006 and 21773163), the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (No. KF2021005), Collaborative Innovation Center of Suzhou Nano Science and Technology, the “Priority Academic Program Development” of Jiangsu Higher Education Institutions, and the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201905). We are grateful to the editor and the reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolong Huang, Zheng Niu, Xiaoqing Huang or Jianping Lang.

Electronic Supplementary Material

12274_2021_3475_MOESM1_ESM.pdf

Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Shao, Q., Xue, J. et al. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 15, 310–316 (2022). https://doi.org/10.1007/s12274-021-3475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3475-z

Keywords

Navigation