Skip to main content
Log in

Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxygen evolution reaction (OER) is crucial for hydrogen production as well as other energy storage technologies. CoFe-layered double hydroxide (CoFe-OH) has been widely considered as one of the most efficient electrocatalysts for OER in basic aqueous solution. However, it still suffers from low activity in neutral electrolyte. This paper describes partially oxidized CoFe-OH (PO-CoFe-OH) with enhanced covalency of M-O bonds and displays enhanced OER performance under mild condition. Mechanism studies reveal the suitably enhanced M-O covalency in PO-CoFe-OH shifts the OER mechanism to lattice oxygen oxidation mechanism and also promotes the rate-limiting deprotonation, providing superior OER performance. It just requires the overpotentials of 186 and 365 mV to drive the current density densities of 1 and 10 mA·cm−2 in 0.1 M KHCO3 aqueous solution (pH = 8.3), respectively. It provides a new process for rational design of efficient catalysts for water oxidation in mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  Google Scholar 

  2. Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.

    Article  CAS  Google Scholar 

  3. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  CAS  Google Scholar 

  4. Ledendecker, M.; Geiger, S.; Hengge, K.; Lim, J.; Cherevko, S.; Mingers, A. M.; Göhl, D.; Fortunato, G. V.; Jalalpoor, D.; Schüth, F. et al. Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Res. 2019, 12, 2275–2280.

    Article  CAS  Google Scholar 

  5. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  CAS  Google Scholar 

  6. Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  CAS  Google Scholar 

  7. Dincă, M.; Surendranath, Y.; Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 10337–10341.

    Article  Google Scholar 

  8. Yang, L. B.; Liu, D. N.; Hao, S.; Kong, R. M.; Asiri, A. M.; Zhang, C. X.; Sun, X. P. A cobalt-borate nanosheet array: An efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. J. Mater. Chem. A 2017, 5, 7305–7308.

    Article  CAS  Google Scholar 

  9. Cui, L.; Qu, F. L.; Liu, J. Q.; Du, G.; Asiri, A. M.; Sun, X. P. Interconnected network of core-shell CoP@CoBiPi for efficient water oxidation electrocatalysis under near neutral conditions. ChemSusChem 2017, 10, 1370–1374.

    Article  CAS  Google Scholar 

  10. Ji, X. Q.; Cui, L.; Liu, D. N.; Hao, S.; Liu, J. Q.; Qu, F. L.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. A nickel-borate nanoarray: A highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chem. Commun. 2017, 53, 3070–3073.

    Article  CAS  Google Scholar 

  11. Shao, Y.; Xiao, X.; Zhu, Y. P.; Ma, T. Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem., Int. Ed. 2019, 58, 14599–14604.

    Article  CAS  Google Scholar 

  12. Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.

    Article  Google Scholar 

  13. Xu, Y. T.; Ye, Z. M.; Ye, J. W.; Cao, L. M.; Huang, R. K.; Wu, J. X.; Zhou, D. D.; Zhang, X. F.; He, C. T.; Zhang, J. P. et al. Non-3d metal modulation of a cobalt imidazolate framework for excellent electrocatalytic oxygen evolution in neutral media. Angew. Chem., Int. Ed. 2019, 58, 139–143.

    Article  CAS  Google Scholar 

  14. Ullman, A. M.; Brodsky, C. N.; Li, N.; Zheng, S. L.; Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 2016, 135, 4229–4236.

    Article  Google Scholar 

  15. Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

    Article  CAS  Google Scholar 

  16. Yuan, Z. J.; Bak, S. M.; Li, P. S.; Jia, Y.; Zheng, L. R.; Zhou, Y.; Bai, L.; Hu, E. Y.; Yang, X. Q.; Cai, Z. et al. Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH. ACS Energy Lett. 2019, 4, 1412–1418.

    Article  CAS  Google Scholar 

  17. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  CAS  Google Scholar 

  18. Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

    Article  Google Scholar 

  19. Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

    Article  Google Scholar 

  20. Wang, A. L.; Xu, H.; Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett. 2016, 1, 445–453.

    Article  CAS  Google Scholar 

  21. Huang, M. Q.; Liu, W. W.; Wang, L.; Liu, J. W.; Chen, G. Y.; You, W. B.; Zhang, J.; Yuan, L. J.; Zhang, X. F.; Che, R. C. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810–817.

    Article  CAS  Google Scholar 

  22. Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79–85.

    Article  CAS  Google Scholar 

  23. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

    Article  CAS  Google Scholar 

  24. Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Luo, D.; Xie, L. X.; Yu, F.; Bao, J. M.; Li, Y.; Yu, Y. et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy 2017, 41, 327–336.

    Article  Google Scholar 

  25. Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

    Article  CAS  Google Scholar 

  26. Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y. Q.; Li, C. L.; Li, Y. B. Fe-based electrocatalysts for oxygen evolution reaction: Progress and perspectives. ACS Catal. 2020, 10, 4019–4047.

    Article  CAS  Google Scholar 

  27. Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012–6021.

    Article  CAS  Google Scholar 

  28. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  CAS  Google Scholar 

  29. Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

    Article  CAS  Google Scholar 

  30. Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

    Article  CAS  Google Scholar 

  31. Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

    Article  CAS  Google Scholar 

  32. Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker, M. C.; Boettcher, S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288–2295.

    Article  CAS  Google Scholar 

  33. Trześniewski, B. J.; Diaz-Morales, O.; Vermaas, D. A.; Longo, A.; Bras, W.; Koper, M. T. M.; Smith, W. A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J. Am. Chem. Soc. 2015, 137, 15112–15121.

    Article  Google Scholar 

  34. Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639–2645.

    Article  CAS  Google Scholar 

  35. Görlin, M.; de Araújo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070–2082.

    Article  Google Scholar 

  36. Bergmann, A.; Jones, T. E.; Martinez Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 2018, 1, 711–719.

    Article  CAS  Google Scholar 

  37. Zhong, D. Z.; Zhang, L.; Li, C. C.; Li, D. D.; Wei, C. C.; Zhao, Q.; Li, J. P.; Gong, J. L. Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 16180–16817.

    Article  Google Scholar 

  38. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570.

    Article  CAS  Google Scholar 

  39. Singh, V.; Kosa, M.; Majhi, K.; Major, D. T. Putting DFT to the test: A first-principles study of electronic, magnetic, and optical properties of Co3O4. J. Chem. Theory Comput. 2015, 11, 64–72.

    Article  CAS  Google Scholar 

  40. Pack, J. D.; Monkhorst, H. J.; Freeman, D. L. Lithium crystal properties from high-quality Hartree-Fock wave functions. Solid State Commun. 1979, 29, 723–725.

    Article  CAS  Google Scholar 

  41. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  42. Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.

    Article  Google Scholar 

  43. Chemelewski, W. D.; Lee, H. C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 2014, 136, 2843–2850.

    Article  CAS  Google Scholar 

  44. Yang, R.; Zhou, Y. M.; Xing, Y. Y.; Li, D.; Jiang, D. L.; Chen, M.; Shi, W. D.; Yuan, S. Q. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B Environ. 2019, 253, 131–139.

    Article  CAS  Google Scholar 

  45. Liu, L.; Jiang, Z. Q.; Fang, L.; Xu, H. T.; Zhang, H. J.; Gu, X.; Wang, Y. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 27736–27744.

    Article  CAS  Google Scholar 

  46. Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.

    Article  CAS  Google Scholar 

  47. Ma, L. N.; Zhou, H.; Xu, M.; Hao, P. P.; Kong, X. G.; Duan, H. H. Integrating hydrogen production with anodic selective oxidation of sulfides over a CoFe layered double hydroxide electrode. Chem. Sci. 2021, 12, 938–945.

    Article  CAS  Google Scholar 

  48. Liu, S. J.; Zhu, J.; Sun, M.; Ma, Z. X.; Hu, K.; Nakajima, T.; Liu, X. H.; Schmuki, P.; Wang, L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. J. Mater. Chem. A 2020, 8, 2490–2497.

    Article  CAS  Google Scholar 

  49. Zhu, K. Y.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped cofe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.

    Article  CAS  Google Scholar 

  50. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3867–3879.

    Google Scholar 

  51. Zhao, J. W.; Li, C. F.; Shi, Z. X.; Guan, J. L.; Li, G. R. Boosting lattice oxygen oxidation of perovskite to efficiently catalyze oxygen evolution reaction by FeOOH decoration. Research 2020, 2020, 6961578.

    Article  CAS  Google Scholar 

  52. Frost, R. L.; Weier, M. L.; Kloprogge, J. T. Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer. J. Raman Spectrosc. 2003, 34, 760–768.

    Article  CAS  Google Scholar 

  53. Jiang, S.; Klingan, K.; Pasquini, C.; Dau, H. New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 2019, 150, 041718.

    Article  Google Scholar 

  54. Li, Z. H.; Duan, H. H.; Shao, M. F.; Li, J. B.; O’Hare, D.; Wei, M.; Wang, Z. L. Ordered-vacancy-induced cation intercalation into layered double hydroxides: A general approach for high-performance supercapacitors. Chem 2018, 4, 2168–2179.

    Article  CAS  Google Scholar 

  55. Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 2020, 13, 246–254.

    Article  CAS  Google Scholar 

  56. Chen, J.; Xu, G. Z.; Wang, C.; Zhu, K.; Wang, H. X.; Yan, S. C.; Yu, Z. T.; Zou, Z. G. High-performance and stable silicon photoanode modified by crystalline Ni@amorphous Co core-shell nanoparticles. ChemCatChem 2018, 10, 5025–5031.

    Article  Google Scholar 

  57. Zhang, M.; de Respinis, M.; Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 2014, 6, 362–367.

    Article  CAS  Google Scholar 

  58. Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

    Article  CAS  Google Scholar 

  59. Ye, Y. F.; Thorne, J. E.; Wu, C. H.; Liu, Y. S.; Du, C.; Jang, J. W.; Liu, E.; Wang, D. W.; Guo, J. H. Strong O 2p-Fe 3d hybridization observed in solution-grown hematite films by soft X-ray spectroscopies. J. Phys. Chem. B 2018, 122, 927–932.

    Article  Google Scholar 

  60. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361–11364.

    Article  CAS  Google Scholar 

  61. Ahn, H. S.; Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1−xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites. J. Am. Chem. Soc. 2016, 135, 313–318.

    Article  Google Scholar 

  62. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Nos. 21878202, 21975175, and U1932119), the research project supported by Shanxi Scholarship Council of China (No. 2017-041), the Natural Science Foundation of Shanxi Province (No. 201801D121052), and the National Key Basic Research Program of China (No. 2017YFA0403402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhao or Jinping Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, D., Li, T., Wang, D. et al. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 15, 162–169 (2022). https://doi.org/10.1007/s12274-021-3451-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3451-7

Keywords

Navigation