Skip to main content
Log in

Single atom catalysts by atomic diffusion strategy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The depletion of energy and increasing environmental pressure have become one of the main challenges in the world today. Synthetic high-efficiency catalysts bring hope for efficient conversion of energy and effective treatment of pollutants, especially, single-atom catalysts (SACs) are promising candidates. Herein, we comprehensively summarizes the atomic diffusion strategy, which is considered as an effective method to prepare a series of SACs. According to the different diffusion forms of the precursors, we review the synthesis pathways of SACs from three aspects: gas diffusion, solid diffusion and liquid diffusion. The gaseous diffusion method mainly discusses atomic layer deposition (ALD) and chemical vapor deposition (CVD), both of which carry out gas phase mass transfer at high temperatures. The solid-state diffusion method can be divided into nanoparticle transformation into single atoms and solid atom migration. Liquid diffusion mainly describes the electrochemical method and the molten salt method. We hope this review can trigger the rational design of SACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  Google Scholar 

  2. Li, C. Single Co atom catalyst stabilized in C/N containing matrix. Chinese J. Catal. 2016, 37, 1443–1445.

    Article  CAS  Google Scholar 

  3. Yang, X. F.; Wang, A. Q.; Qian, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  4. Li, S. W.; Liu, J. J.; Yin, Z.; Ren, P. J.; Lin, L. L.; Gong, Y.; Yang, C.; Zheng, X. S.; Cao, R. C.; Yao, S. Y. et al. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catal. 2020, 10, 907–913.

    Article  CAS  Google Scholar 

  5. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

    Article  CAS  Google Scholar 

  6. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  7. Shang, H. S.; Wang, T.; Pei, J. J; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    Article  CAS  Google Scholar 

  8. Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

    Article  CAS  Google Scholar 

  9. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  10. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–6

    Article  CAS  Google Scholar 

  11. Abbet, S.; Sanchez, A.; Heiz, U.; Schneider, W.-D.; Ferrari, A.-M.; Pacchioni, G.; Rösch, N. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough!. J. Am. Chem. Soc. 2000, 122, 3453–3457.

    Article  CAS  Google Scholar 

  12. Long, X. D.; Li, Z. L.; Gao, G.; Sun, P.; Wang, J.; Zhang, B. S.; Zhong, J.; Jiang, Z.; Li, F. W. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 2020, 11, 4074.

    Article  CAS  Google Scholar 

  13. He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

    Article  CAS  Google Scholar 

  14. Xuan, N. N.; Chen, J. H.; Shi, J. J.; Yue, Y. W.; Zhuang, P. Y.; Ba, K.; Sun, Y. Y.; Shen, J. F.; Liu, Y. Y.; Ge, B. H. et al. Single-atom electroplating on two dimensional materials. Chem. Mater. 2019, 31, 429–435.

    Article  CAS  Google Scholar 

  15. Zhang, Z. R.; Feng, C.; Liu, C. X.; Zuo, M.; Qin, L.; Yan, X. P.; Xing, Y. L.; Li, H. L.; Si, R.; Zhou, S. M. et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 2020, 11, 1215.

    Article  CAS  Google Scholar 

  16. Zhou, M.; Dick, J. E.; Bard, A. J. Electrodeposition of isolated platinum atoms and clusters on bismuth-characterization and electrocatalysis. J. Am. Chem. Soc. 2017, 139, 17677–17682.

    Article  CAS  Google Scholar 

  17. Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.

    Article  CAS  Google Scholar 

  18. Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

    Article  CAS  Google Scholar 

  19. Yan, H.; Lin, Y.; Wu, H.; Zhang, W. H.; Sun, Z. H.; Cheng, H.; Liu, W.; Wang, C. L.; Li, J. J.; Huang, X. H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070.

    Article  Google Scholar 

  20. Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775.

    Article  Google Scholar 

  21. Wang, Z. Y.; Yang, J.; Gan, J.; Chen, W. X.; Zhou, F. Y.; Zhou, X.; Yu, Z. Q.; Zhu, J. F.; Duan, X. Z.; Wu, Y. E. Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 10755–10760.

    Article  CAS  Google Scholar 

  22. Wang, Z. Y.; Yang, J.; Cao, J. B.; Chen, W. X.; Wang, G.; Liao, F.; Zhou, X.; Zhou, F. Y.; Li, R. L.; Yu, Z. Q. et al. Room-temperature synthesis of single iron site by electrofiltration for photoreduction of CO2 into tunable syngas. ACS Nano 2020, 14, 6164–6172.

    Article  CAS  Google Scholar 

  23. Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

    Article  CAS  Google Scholar 

  24. Zhou, M.; Bao, S. J.; Bard, A. J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332.

    Article  CAS  Google Scholar 

  25. Tavakkoli, M.; Holmberg, N.; Kronberg, R.; Jiang, H.; Sainio, J.; Kauppinen, E. I.; Kallio, T.; Laasonen, K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 2017, 7, 3121–3130.

    Article  CAS  Google Scholar 

  26. Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

    Article  CAS  Google Scholar 

  27. Zhou, H.; Yang, T.; Kou, Z. K.; Shen, L.; Zhao, Y. F.; Wang, Z. Y.; Wang, X. Q.; Yang, Z. K.; Du, J. Y.; Xu, J. et al. Negative pressure pyrolysis induced highly accessible single sites dispersed on 3D graphene frameworks for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2020, 59, 20465–20469.

    Article  CAS  Google Scholar 

  28. Bonnick, P.; Muldoon, J. The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy Environ. Sci. 2020, 13, 4808–4833.

    Article  CAS  Google Scholar 

  29. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    Article  CAS  Google Scholar 

  30. Krisyuk, V.; Aloui, L.; Prud’homme, N.; Sysoev, S.; Senocq, F.; Samélor, D.; Vahlas, C. CVD of pure copper films from amidinate precursor. Electrochem. Solid State Lett. 2011, 14, D26–D29.

    Article  CAS  Google Scholar 

  31. Maimaiti, Y.; Elliott, S. D. Kinetics and coverage dependent reaction mechanisms of the copper atomic layer deposition from copper dimethylamino-2-propoxide and diethylzinc. Chem. Mater. 2016, 28, 6282–6295.

    Article  CAS  Google Scholar 

  32. von Weber, A.; Baxter, E. T.; Proch, S.; Kane, M. D.; Rosenfelder, M.; White, H. S.; Anderson, S. L. Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14). Phys. Chem. Chem. Phys. 2015, 17, 17601–17610.

    Article  CAS  Google Scholar 

  33. Khachatryan, L.; Vejerano, E.; Lomnicki, S.; Dellinger, B. Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. Environ. Sci. Technol. 2011, 45, 8559–8566.

    Article  CAS  Google Scholar 

  34. Zhao, Y. B.; Ma, W. H.; Li, Y.; Ji, H. W.; Chen, C. C.; Zhu, H. Y.; Zhao, J. C. The surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem., Int. Ed. 2012, 51, 3188–3192.

    Article  CAS  Google Scholar 

  35. Eslamibidgoli, M. J.; Eikerling, M. H. Electrochemical formation of reactive oxygen species at Pt (111)—A density functional theory study. ACS Catal. 2015, 5, 6090–6098.

    Article  CAS  Google Scholar 

  36. Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

    Article  CAS  Google Scholar 

  37. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

    Article  CAS  Google Scholar 

  38. Chen, Z.; Yang, W. J.; Wu, Y.; Zhang, C.; Luo, J.; Chen, C.; Li, Y. D. Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Res. 2020, 13, 3075–3081.

    Article  CAS  Google Scholar 

  39. Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

    Article  CAS  Google Scholar 

  40. Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

    Article  CAS  Google Scholar 

  41. Babucci, M.; Sarac Oztuna, F. E.; Debefve, L. M.; Boubnov, A.; Bare, S. R.; Gates, B. C.; Unal, U.; Uzun, A. Atomically dispersed reduced graphene aerogel-supported iridium catalyst with an iridium loading of 14.8 wt %. ACS Catal. 2019, 9, 9905–9913.

    Article  CAS  Google Scholar 

  42. Feng, Q. C.; Zhao, S.; Xu, Q.; Chen, W. X.; Tian, S. B.; Wang, Y.; Yan, W. S.; Luo, J.; Wang, D. S.; Li, Y. D. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024.

    Article  Google Scholar 

  43. Shang, H. S.; Chen, W. X.; Jiang, Z. L.; Zhou, D. N.; Zhang, J. T. Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chem. Commun. 2020, 56, 3127–3130.

    Article  CAS  Google Scholar 

  44. Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X. Y.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

    Article  CAS  Google Scholar 

  45. Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.

    Article  CAS  Google Scholar 

  46. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

    Article  Google Scholar 

  47. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  48. Geng, Z. G.; Cao, Y. J.; Chen, W. X.; Kong, X. D.; Liu, Y.; Yao, T.; Lin, Y. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B Environ. 2019, 240, 234–240.

    Article  CAS  Google Scholar 

  49. Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

    Article  CAS  Google Scholar 

  50. Kistler, J. D.; Chotigkrai, N.; Xu, P. H.; Enderle, B.; Praserthdam, P.; Chen, C. Y.; Browning, N. D.; Gates, B. C. A single-site platinum CO oxidation catalyst in zeolite KLTL: Microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem., Int. Ed. 2014, 53, 8904–8907.

    Article  CAS  Google Scholar 

  51. Liu, Y. W.; Li, Z.; Yu, Q. Y.; Chen, Y. F.; Chai, Z. W.; Zhao, G. F.; Liu, S. J.; Cheong, W. C.; Pan, Y.; Zhang, Q. H. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 2019, 141, 9305–9311.

    Article  Google Scholar 

  52. Kim, S.; Jee, S.; Choi, K. M.; Shin, D. S. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media. Nano Res. 2021, 14, 486–492.

    Article  CAS  Google Scholar 

  53. Liu, P. X.; Zhao, Y.; Qin, R. X.; Gu, L.; Zhang, P.; Fu, G.; Zheng, N. F. A vicinal effect for promoting catalysis of Pd1/TiO2: Supports of atomically dispersed catalysts play more roles than simply serving as ligands. Sci. Bull. 2018, 63, 675–682.

    Article  CAS  Google Scholar 

  54. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  55. Cao, K.; Cai, J. M.; Chen, R. Inherently selective atomic layer deposition and applications. Chem. Mater. 2020, 32, 2195–2207.

    Article  CAS  Google Scholar 

  56. George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.

    Article  CAS  Google Scholar 

  57. Lu, J. L. A Perspective on new opportunities in atom-by-atom synthesis of heterogeneous catalysts using atomic layer deposition. Catal. Lett. 2020, doi: https://doi.org/10.1007/s10562-020-03412-8.

  58. Lee, B. H.; Hwang, J. K.; Nam, J. W.; Lee, S. U.; Kim, J. T.; Koo, S. M.; Baunemann, A.; Fischer, R. A.; Sung, M. M. Low-temperature atomic layer deposition of copper metal thin films: Self-limiting surface reaction of copper dimethylamino-2-propoxide with diethylzinc. Angew. Chem. 2009, 121, 4606–4609.

    Article  Google Scholar 

  59. Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

    Article  CAS  Google Scholar 

  60. Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S. H.; Liu, J.; Zhang, G. X.; Sun, X. L.; Botton, G. A. Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J. Phys. Chem. C 2014, 118, 3890–3900.

    Article  CAS  Google Scholar 

  61. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    Article  CAS  Google Scholar 

  62. Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

    Article  CAS  Google Scholar 

  63. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

    Article  CAS  Google Scholar 

  64. Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

    Article  CAS  Google Scholar 

  65. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  66. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  67. Lu, J. L.; Low, K. B.; Lei, Y.; Libera, J. A.; Nicholls, A.; Stair, P. C.; Elam, J. W. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun. 2014, 5, 3264.

    Article  Google Scholar 

  68. Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.

    Article  CAS  Google Scholar 

  69. Zhang, T.; Fu, L. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem 2018, 4, 671–689.

    Article  CAS  Google Scholar 

  70. Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y. E.; Li, Y. D. Porous molybdenum phosphide Nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854–12858.

    Article  CAS  Google Scholar 

  71. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  72. Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. E. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

    Article  Google Scholar 

  73. Liu, S. W.; Wang, M. Y.; Yang, X. X.; Shi, Q. R.; Qiao, Z.; Lucero, M.; Ma, Q.; More, K. L.; Cullen, D. A.; Feng, Z. X. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem., Int. Ed. 2020, 59, 21698–21705.

    Article  CAS  Google Scholar 

  74. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    Article  CAS  Google Scholar 

  75. Yan, H.; Zhao, X. X.; Guo, N.; Lyu, Z. Y.; Du, Y. H.; Xi, S. B.; Guo, R.; Chen, C.; Chen, Z. X.; Liu, W. et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat. Commun. 2018, 9, 3197.

    Article  Google Scholar 

  76. Wang, X. F.; Jin, B. T.; Jin, Y.; Wu, T. P.; Ma, L.; Liang, X. H. Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions. ACS Appl. Nano Mater. 2020, 3, 2867–2874.

    Article  CAS  Google Scholar 

  77. Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars-van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

    Article  CAS  Google Scholar 

  78. Lin, Q. Y.; Ding, B.; Chen, S.; Li, P.; Li, Z. W.; Shi, Y. Y.; Dou, H.; Zhang, X. G. Atomic layer deposition of single atomic cobalt as a catalytic interlayer for lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 11206–11212.

    Article  CAS  Google Scholar 

  79. Moliner, M.; Gabay, J. E.; Kliewer, C. E.; Carr, R. T.; Guzman, J.; Casty, G. L.; Serna, P.; Corma, A. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 2016, 138, 15743–15750.

    Article  CAS  Google Scholar 

  80. Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Pereira Hernández, X. I. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  81. Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

    Article  Google Scholar 

  82. Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095–14100.

    Article  CAS  Google Scholar 

  83. Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803.

    Article  CAS  Google Scholar 

  84. Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

    Article  CAS  Google Scholar 

  85. Nguyen, T. N.; Salehi, M.; Van Le, Q.; Seifitokaldani, A.; Dinh, C. T. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 2020, 10, 10068–10095.

    Article  Google Scholar 

  86. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  87. Zhou, H.; Liu, T. Y.; Zhao, X. Y.; Zhao, Y. F.; Lv, H. W.; Fang, S.; Wang, X. Q.; Zhou, F. Y.; Xu, Q.; Xu, J. et al. A supported nickel catalyst stabilized by a surface digging effect for efficient methane oxidation. Angew. Chem., Int. Ed. 2019, 58, 18388–18393.

    Article  CAS  Google Scholar 

  88. Zhao, C. M.; Wang, Y.; Li, Z. J.; Chen, W. X.; Xu, Q.; He, D. S.; Xi, D. S.; Zhang, Q. H.; Yuan, T. W.; Qu, Y. T. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 2019, 3, 584–594.

    Article  CAS  Google Scholar 

  89. Yu, H. D.; Xue, Y. R.; Huang, B. L.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Zhao, Y. J.; Li, Y. J.; Liu, H. B. et al. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production. iScience 2019, 11, 31–41.

    Article  CAS  Google Scholar 

  90. Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

    Article  CAS  Google Scholar 

  91. McGill, P. R.; Idriss, H. Ab initio study of surface acid-base reactions. The case of molecular and dissociative adsorption of ammonia on the (011) surface of rutile TiO2. Langmuir 2008, 24, 97–104.

    Article  CAS  Google Scholar 

  92. Zhao, Y. Y.; Zhou, Y. K.; Xiong, B.; Wang, J.; Chen, X.; O’Hayre, R.; Shao, Z. P. Facile single-step preparation of Pt/N-graphene catalysts with improved methanol electrooxidation activity. J. Solid State Electrochem. 2013, 17, 1089–1098.

    Article  CAS  Google Scholar 

  93. Qu, Y. T.; Wang, L. G.; Li, Z. J.; Li, P.; Zhang, Q. H.; Lin, Y.; Zhou, F. Y.; Wang, H. J.; Yang, Z. K.; Hu, Y. D. et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 2019, 31, 1904496.

    Article  CAS  Google Scholar 

  94. Ge, X.; Su, G. R.; Che, W.; Yang, J.; Zhou, X.; Wang, Z. Y.; Qu, Y. T.; Yao, T.; Liu, W.; Wu, Y. E. Atomic filtration by graphene oxide membranes to access atomically dispersed single atom catalysts. ACS Catal. 2020, 10, 10468–10475.

    Article  CAS  Google Scholar 

  95. Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

    Article  CAS  Google Scholar 

  96. Zhou, P.; Li, N.; Chao, Y. G.; Zhang, W. Y.; Lv, F.; Wang, K.; Yang, W. X.; Gao, P.; Guo, S. J. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem., Int. Ed. 2019, 58, 14184–14188.

    Article  CAS  Google Scholar 

  97. Zhang, S. L.; Ying, H. J.; Huang, P. F.; Wang, J. L.; Zhang, Z.; Yang, T. T.; Han, W. Q. Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 2020, 14, 17665–17674.

    Article  CAS  Google Scholar 

  98. Shi, Y.; Huang, W. M.; Li, J.; Zhou, Y.; Li, Z. Q.; Yin, Y. C.; Xia, X. H. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat. Commun. 2020, 11, 4558.

    Article  CAS  Google Scholar 

  99. Al-Akl, A.; Attard, G. A. Anion effects in the UPD of copper on Pd/Pt(111) bimetallic electrodes. J. Phys. Chem. B 1997, 101, 4597–4606.

    Article  CAS  Google Scholar 

  100. Xiao, M.; Zhang, L.; Luo, B.; Lyu, M. Q.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.

    Article  CAS  Google Scholar 

  101. Mao, Y. B.; Guo, X.; Huang, J. Y.; Wang, K. L.; Chang, J. P. Luminescent nanocrystals with A2B2O7 composition synthesized by a kinetically modified molten salt method. J. Phys. Chem. C 2009, 113, 1204–1208.

    Article  CAS  Google Scholar 

  102. Qiu, P. T.; Bi, J. L.; Zhang, X. J.; Yang, S. C. Organics- and surfactant-free molten salt medium controlled synthesis of Pt-M (M = Cu and Pd) Bi- and trimetallic nanocubes and nanosheets. ACS Sustainable Chem. Eng. 2017, 5, 4205–4213.

    Article  CAS  Google Scholar 

  103. Jeong, H.; Shin, S.; Lee, H. Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano 2020, 14, 14355–14374.

    Article  Google Scholar 

  104. Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

    Article  CAS  Google Scholar 

  105. Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

    Article  Google Scholar 

  106. Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198–10203.

    Article  CAS  Google Scholar 

  107. Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319–8323.

    Article  CAS  Google Scholar 

  108. Lin, C.; Zhang, H.; Song, X. K.; Kim, D. H.; Li, X. P.; Jiang, Z.; Lee, J. H. 2D-organic framework confined metal single atoms with the loading reaching the theoretical limit. Mater. Horiz. 2020, 7, 2726–2733.

    Article  CAS  Google Scholar 

  109. Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

    Article  CAS  Google Scholar 

  110. Liu, D. B.; Wu, C. Q.; Chen, S. M.; Ding, S. Q.; Xie, Y. F.; Wang, C. D.; Wang, T.; Haleem, Y. A.; ur Rehman, Z.; Sang, Y. et al. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 2018, 11, 2217–2228.

    Article  CAS  Google Scholar 

  111. Sun, J. F.; Xu, Q. Q.; Qi, J. L.; Zhou, D.; Zhu, H. Y.; Yin, J. Z. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustainable Chem. Eng. 2020, 8, 14630–14656.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21801015) and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen or Wenxing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Chen, Z. & Chen, W. Single atom catalysts by atomic diffusion strategy. Nano Res. 14, 4398–4416 (2021). https://doi.org/10.1007/s12274-021-3412-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3412-9

Keywords

Navigation