Skip to main content
Log in

Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electronic properties, and excellent chemical stability. Although notable processes have been achieved in the past decades, their performance is still far less than that of Pt. Searching effective strategies to boosting their HER performance is still the primary goal. In this review, the recent process of the electronic regulation of MoS2 for HER is summarized, including band structure engineering, electronic state modulation, orbital orientation regulation, interface engineering. Last, the key challenges and opportunities in the development of MoS2-based materials for electrochemical HER are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zou, X. X; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    CAS  Google Scholar 

  2. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.

    CAS  Google Scholar 

  3. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

    CAS  Google Scholar 

  4. Wu, J. D.; Wang, D. P; Wan, S. A.; Liu, H. L; Wang, C.; Wang, X. An efficient cobalt phosphide electrocatalyst derived from cobalt phosphonate complex for all-pH hydrogen evolution reaction and overall water splitting in alkaline solution. Small 2020, 16, 1900550.

    CAS  Google Scholar 

  5. Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

    CAS  Google Scholar 

  6. Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G G; Chen, J. Engineered 2D transition metal dichalcogenides—A vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

    CAS  Google Scholar 

  7. Niu, S. W; Fang, Y. Y.; Zhou, J. B; Cai, J. Y; Zang, Y. P.; Wu, Y. S.; Ye, J.; Xie, Y. F.; Liu, Y.; Zheng, X. S. et al. Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering. J. Mater. Chem. A 2019, 7, 10924–10929.

    CAS  Google Scholar 

  8. Ye, S. H.; Luo, F. Y.; Zhang, Q. L.; Zhang, P. Y.; Xu, T. T.; Wang, Q.; He, D. S.; Guo, L. C.; Zhang, Y.; He, C. X. et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000–1007.

    CAS  Google Scholar 

  9. Lu, X. F.; Yu, L.; Zhang, J. T.; Lou, X. W. Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction. Adv. Mater. 2019, 31, 1900699.

    Google Scholar 

  10. Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

    Google Scholar 

  11. Bai, S.; Wang, C. M; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.

    CAS  Google Scholar 

  12. Furimsky, E. Role of MoS2 and WS2 in hydrodesulfuritation. Catal. Rev. 1980, 22, 371–400.

    CAS  Google Scholar 

  13. Li, P. H.; Yang, Y.; Gong, S.; Lv, F.; Wang, W.; Li, Y. J.; Luo, M. C.; Xing, Y.; Wang, Q.; Guo, S. J. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res. 2019, 12, 2218–2223.

    CAS  Google Scholar 

  14. Hinnemann, B.; Moses, P. G; Bonde, J.; Jergensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nerskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    CAS  Google Scholar 

  15. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    CAS  Google Scholar 

  16. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

    CAS  Google Scholar 

  17. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    CAS  Google Scholar 

  18. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    CAS  Google Scholar 

  19. Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electro-catalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

    CAS  Google Scholar 

  20. Li, R. C.; Yang, L. J.; Xiong, T. L.; Wu, Y. S.; Cao, L. D.; Yuan, D. S.; Zhou, W. J. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 2017, 356, 133–139.

    CAS  Google Scholar 

  21. Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem. 2020, 132, 10588–10593.

    Google Scholar 

  22. Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.

    Google Scholar 

  23. Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.

    CAS  Google Scholar 

  24. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    CAS  Google Scholar 

  25. Zhang, G.; Liu, H. J.; Qu, J. H.; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209.

    CAS  Google Scholar 

  26. Morales-Guio, C. G; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

    CAS  Google Scholar 

  27. Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

    CAS  Google Scholar 

  28. Wei, J. M.; Zhou, M.; Long, A. C.; Xue, Y. M.; Liao, H. B.; Wei, C.; Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 2018, 10, 75.

    CAS  Google Scholar 

  29. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  30. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Google Scholar 

  31. Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater, in press, DOI: https://doi.org/10.1002/adma.201907818.

  32. Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

    Google Scholar 

  33. Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

    Google Scholar 

  34. Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

    CAS  Google Scholar 

  35. Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.

    Google Scholar 

  36. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on moni4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

    CAS  Google Scholar 

  37. Du, H. T.; Kong, R. M.; Guo, X. X.; Qu, F. L.; Li, J. H. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 2018, 10, 21617–21624.

    CAS  Google Scholar 

  38. Li, D. L.; Batchelor-McAuley, C.; Compton, R. G. Some thoughts about reporting the electrocatalytic performance of nanomaterials. Appl. Mater. Today 2020, 18, 100404.

    Google Scholar 

  39. Gao, D. Q.; Zhang, J. Y.; Wang, T. T.; Xiao, W.; Tao, K.; Xue, D. S.; Ding, J. Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 2016, 4, 17363–17369.

    CAS  Google Scholar 

  40. Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

    Google Scholar 

  41. Quiroz, M. A.; Meas, Y.; Lamy-Pitara, E.; Barbier, J. Characterization of a ruthenium electrode by underpotential deposition of copper. J. Electroanal. Chem. Interfacial Electrochem. 1983, 157, 165–174.

    CAS  Google Scholar 

  42. Green, C. L.; Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 2002, 106, 1036–1047.

    CAS  Google Scholar 

  43. Li, H. Y.; Jia, X. F.; Zhang, Q.; Wang, X. Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510–1537.

    CAS  Google Scholar 

  44. Sun, X. L.; Wang, Z. G.; Li, Z. J.; Fu, Y. Q. Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci. Rep. 2016, 6, 26666.

    CAS  Google Scholar 

  45. Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.

    CAS  Google Scholar 

  46. Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

    CAS  Google Scholar 

  47. Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 2012, 6, 5449–5456.

    CAS  Google Scholar 

  48. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

    CAS  Google Scholar 

  49. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    CAS  Google Scholar 

  50. Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164.

    CAS  Google Scholar 

  51. Tsai, C.; Chan, K.; Nørskov, J. K.; Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 2015, 640, 133–140.

    CAS  Google Scholar 

  52. Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

    CAS  Google Scholar 

  53. Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nano-structured electrodes. Adv. Mater. 2014, 26, 2683–2687.

    CAS  Google Scholar 

  54. Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

    Google Scholar 

  55. Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B. S.; Laegsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53–58.

    CAS  Google Scholar 

  56. Kang, X.; Liu, J. C.; Tian, C. G.; Wang, D. X.; Li, Y. R.; Zhang, H. Y.; Cheng, X. S.; Wu, A. P.; Fu, H. G. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 2020, 13, 882–890.

    CAS  Google Scholar 

  57. Zhu, L. J.; Yang, P. F.; Huan, Y. H.; Pan, S. Y.; Zhang, Z. Q.; Cui, F. F.; Shi, Y. P.; Jiang, S. L.; Xie, C. Y.; Hong, M. et al. Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Res. 2020, 13, 3098–3104.

    Google Scholar 

  58. Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.

    CAS  Google Scholar 

  59. Di, S. J.; Ding, P.; Wang, Y. Y.; Wu, Y. L.; Deng, J.; Jia, L.; Li, Y. G. Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225–230.

    CAS  Google Scholar 

  60. Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

    Google Scholar 

  61. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    CAS  Google Scholar 

  62. Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

    CAS  Google Scholar 

  63. Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.

    Google Scholar 

  64. Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. H.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferro-magnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

    CAS  Google Scholar 

  65. Li, J.; Hong, W. T.; Jian, C. Y.; Cai, Q.; He, X.; Liu, W. High-performance hydrogen evolution at a MoSe2-Mo2C seamless heterojunction enabled by efficient charge transfer. J. Mater. Chem. A 2020, 8, 6692–6698.

    CAS  Google Scholar 

  66. Sun, T.; Wang, J.; Chi, X.; Lin, Y. X.; Chen, Z. X.; Ling, X.; Qiu, C. T.; Xu, Y. S.; Song, L.; Chen, W. et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018, 8, 7585–7592.

    CAS  Google Scholar 

  67. Yang, H. R.; Liu, Y.; Gao, C. S.; Meng, L.; Liu, Y. F.; Tang, X. S.; Ye, H. Y. Adsorption behavior of nucleobases on doped MoS2 monolayer: A DFT study. J. Phys. Chem. C 2019, 123, 30949–30957.

    CAS  Google Scholar 

  68. Yan, M. M.; Jiang, Q. G.; Yang, L.; He, H. Y.; Huang, H. J. Three-dimensional ternary hybrid architectures constructed from graphene, MoS2, and graphitic carbon nitride nanosheets as efficient electrocatalysts for hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 6880–6888.

    CAS  Google Scholar 

  69. Lei, X.; Yu, K.; Li, H. L.; Tang, Z.; Zhu, Z. Q. First-principle and experiment framework for charge distribution at the interface of the molybdenum dichalcogenide hybrid for enhanced electrochemical hydrogen generation. J. Phys. Chem. C 2016, 120, 15096–15104.

    CAS  Google Scholar 

  70. Pan, Y. P.; Zheng, F. W.; Wang, X. X.; Qin, H. Y.; Liu, E. Z.; Sha, J. W.; Zhao, N. Q.; Zhang, P.; Ma, L. Y. Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. J. Catal. 2020, 382, 204–211.

    CAS  Google Scholar 

  71. Karthick, K.; Bijoy, T. K.; Sivakumaran, A.; Basha, A. B. M.; Murugan, P.; Kundu, S. Enhancing hydrogen evolution reaction activities of 2H-phase VS2 layers with palladium nanoparticles. Inorg. Chem. 2020, 59, 10197–10207.

    CAS  Google Scholar 

  72. Sharma, L.; Botari, T.; Tiwary, C. S.; Halder, A. Hydrogen evolution at the in situ MoO3/MoS2 heterojunctions created by nonthermal O2 plasma treatment. ACS Appl. Energy Mater. 2020, 3, 5333–5342.

    CAS  Google Scholar 

  73. Liang, T. T.; Liu, Y. D.; Cheng, Y. Z.; Ma, F.; Dai, Z. F. Scalable synthesis of a MoS2/black phosphorus heterostructure for pH-universal hydrogen evolution catalysis. ChemCatChem 2020, 12, 2840–2848.

    CAS  Google Scholar 

  74. Suliman, M. H.; Adam, A.; Li, L.; Tian, Z. Q.; Siddiqui, M. N.; Yamani, Z. H.; Qamar, M. FeP/MoS2 enriched with dense catalytic sites and high electrical conductivity for the hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 17671–17681.

    CAS  Google Scholar 

  75. He, S.; Du, H. F.; Wang, K.; Liu, Q. C.; Sun, J. M.; Liu, Y. H.; Du, Z. Z.; Xie, L. H.; Ai, W.; Huang, W. Low-temperature molten salt synthesis of MoS2@CoS2 heterostructures for efficient hydrogen evolution reaction. Chem. Commun. 2020, 56, 5548–5551.

    CAS  Google Scholar 

  76. Jin, Q.; Liu, N.; Dai, C. N.; Xu, R. N.; Wu, B.; Yu, G. Q.; Chen, B. H.; Du, Y. Z. H2-directing strategy on in situ synthesis of Co-MoS2 with highly expanded interlayer for elegant HER activity and its mechanism. Adv. Energy Mater. 2020, 10, 2000291.

    CAS  Google Scholar 

  77. Wu, W. J.; Zhao, Y. F.; Li, S. H.; He, B. Y.; Liu, H.; Zeng, X. R.; Zhang, J. Q.; Wang, G. X. P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. J. Colloid Interface Sci. 2019, 547, 291–298.

    CAS  Google Scholar 

  78. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    CAS  Google Scholar 

  79. Wang, H.; Xiao, X.; Liu, S. Y.; Chiang, C. L.; Kuai, X. X.; Peng, C. K.; Lin, Y. C.; Meng, X.; Zhao, J. Q.; Choi, J. et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578–18584.

    CAS  Google Scholar 

  80. Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    CAS  Google Scholar 

  81. Chang, C. H.; Fan, X. F.; Lin, S. H.; Kuo, J. L. Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B 2013, 88, 195420.

    Google Scholar 

  82. Qiao, W.; Xu, W.; Xu, X. Y.; Wu, L. Q.; Yan, S. M.; Wang, D. H. Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 2315–2322.

    CAS  Google Scholar 

  83. Wu, Y. S.; Cai, J. Y.; Xie, Y. F.; Niu, S. W.; Zang, Y. P.; Wu, S. Y.; Liu, Y.; Lu, Z.; Fang, Y. Y.; Guan, Y. et al. Regulating the interfacial electronic coupling of Fe2N via orbital steering for hydrogen evolution catalysis. Adv. Mater. 2020, 32, 1904346.

    CAS  Google Scholar 

  84. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Google Scholar 

  85. Li, H. Y.; Wang, X. Phase control in inorganic nanocrystals through finely tuned growth at an ultrathin scale. Acc. Chem. Res. 2019, 52, 780–790.

    CAS  Google Scholar 

  86. Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

    CAS  Google Scholar 

  87. Yang, S. Z.; Gong, Y. J.; Manchanda, P.; Zhang, Y. Y.; Ye, G. L.; Chen, S. M.; Song, L.; Pantelides, S. T.; Ajayan, P. M.; Chisholm, M. F. et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 2018, 30, 1803477.

    Google Scholar 

  88. Liu, Z. Q.; Zhang, X.; Gong, Y.; Lu, Q. P.; Zhang, Z. C.; Cheng, H. F.; Ma, Q. L.; Chen, J. Z.; Zhao, M. T.; Chen, B. et al. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T’ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res. 2019, 12, 1301–1305.

    CAS  Google Scholar 

  89. Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

    CAS  Google Scholar 

  90. Sun, C.; Wang, P. P.; Wang, H.; Xu, C.; Zhu, J. T.; Liang, Y. X.; Su, Y.; Jiang, Y. N.; Wu, W. Q.; Fu, E. G. et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 2019, 12, 1613–1618.

    CAS  Google Scholar 

  91. Zhang, B.; Liu, J.; Wang, J. S.; Ruan, Y. J.; Ji, X.; Xu, K.; Chen, C.; Wan, H. Z.; Miao, L.; Jiang, J. J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74–80.

    CAS  Google Scholar 

  92. Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

    CAS  Google Scholar 

  93. Zhu, Z. J.; Yin, H. J.; He, C. T.; Al-Mamun, M.; Liu, P. R.; Jiang, L. X.; Zhao, Y.; Wang, Y.; Yang, H. G.; Tang, Z. Y. et al. Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nano-sheets to enhance hydrogen evolution activity. Adv. Mater. 2018, 30, 1801171.

    Google Scholar 

  94. Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.

    Google Scholar 

  95. Zhang, T.; Zhu, H. Y.; Guo, C.; Cao, S. F.; Wu, C. M. L.; Wang, Z. J.; Lu, X. Q. Theoretical investigation on the hydrogen evolution reaction mechanism at MoS2 heterostructures: The essential role of the 1T/2H phase interface. Catal. Sci. Technol. 2020, 10, 458–465.

    CAS  Google Scholar 

  96. Zhou, Q.; Zhao, G Q.; Rui, K.; Chen, Y. P.; Xu, X.; Dou, S. X.; Sun, W. P. Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale 2019, 11, 717–724.

    CAS  Google Scholar 

  97. Liu, Q.; Fang, Q.; Chu, W. S.; Wan, Y. Y.; Li, X. L.; Xu, W. Y.; Habib, M.; Tao, S.; Zhou, Y.; Liu, D. B. et al. Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater 2017, 29, 4738–4744.

    CAS  Google Scholar 

  98. Luo, Z. Y.; Zhang, H.; Yang, Y. Q.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.

    CAS  Google Scholar 

  99. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    CAS  Google Scholar 

  100. Voiry, D.; Fullon, R.; Yang, J.; De Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

    CAS  Google Scholar 

  101. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    CAS  Google Scholar 

  102. He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.

    CAS  Google Scholar 

  103. Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Xie, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

    CAS  Google Scholar 

  104. Zheng, Z. L.; Yu, L.; Gao, M.; Chen, X. Y.; Zhou, W.; Ma, C.; Wu, L. H.; Zhu, J. F.; Meng, X. Y.; Hu, J. T. et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 2020, 11, 3315.

    CAS  Google Scholar 

  105. Li, Y. J.; Pei, W.; He, J. T.; Liu, K.; Qi, W. H.; Gao, X. H.; Zhou, S.; Xie, H. P.; Yin, K.; Gao, Y. L. et al. Hybrids of PtRu nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction. ACS Catal. 2019, 9, 10870–10875.

    CAS  Google Scholar 

  106. Wu, B.; Kovalska, E.; Luxa, J.; Marvan, P.; Cintl, S.; Sofer, Z. Free-standing black phosphorus foils for energy storage and catalysis. Chem.—Eur. J. 2020, 26, 8162–8169.

    CAS  Google Scholar 

  107. Li, J. Y.; Zhao, Z. Q.; Ma, Y. Y.; Qu, Y. Q. Graphene and their hybrid electrocatalysts for water splitting. ChemCatChem 2017, 9, 1554–1568.

    CAS  Google Scholar 

  108. Nguyen, T. P.; Nguyen, D. M. T.; Tran, D. L.; Le, H. K.; Vo, D. V. N.; Lam, S. S.; Varma, R. S.; Shokouhimehr, M.; Nguyen, C. C.; Le, Q. V. MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 2020, 486, 110850.

    CAS  Google Scholar 

  109. Wei, Y.; Soomro, R. A.; Xie, X. Q.; Xu, B. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D Mxenes. J. Energy Chem. 2021, 55, 244–255.

    Google Scholar 

  110. Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an mxene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

    CAS  Google Scholar 

  111. Kunimatsu, K.; Senzaki, T.; Samjeské, G.; Tsushima, M.; Osawa, M. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim. Acta 2007, 52, 5715–5724.

    CAS  Google Scholar 

  112. Li, Y. L.; Cheng, W. R.; Su, H.; Zhao, X.; He, J. F.; Liu, Q. H. Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy 2020, 77, 105121.

    CAS  Google Scholar 

  113. Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electro-catalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    CAS  Google Scholar 

Download references

Acknowledgements

G. M. W. designed and supervised the project. S. W. N. and J. Y. C. wrote and revised the manuscript and contributed equally to this work. And all the authors discussed and commented on the manuscript. We thank the financial supports of the National Natural Science Foundation of China (Nos. 21771169, 51801075, and 11722543), the National Key Research and Development Program of China (No. 2017YFA0206703), Anhui Provincial Natural Science Foundation (No. BJ2060190077), Re-cruitment Program of Global Expert, and the Fundamental Research Funds for the Central Universities (Nos. WK2060190074, WK2060190081, and WK2310000066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Cai, J. & Wang, G. Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 14, 1985–2002 (2021). https://doi.org/10.1007/s12274-020-3249-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3249-z

Keywords

Navigation