Skip to main content
Log in

Control of vertical phase separation in high performance non-fullerene organic solar cell by introducing oscillating stratification preprocessing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Non-fullerene organic solar cell (NFOSC) has attracted tremendous attention due to their great potential for commercial applications. To improve its power conversion efficiency (PCE), generally, sequential solution deposition (SSD) methods have been employed to construct the graded vertical phase separation (VPS) of the bulk-heterojunction (BHJ) active layer for efficient exciton separation and charge transition. However, a variety of orthogonal solvents used in the SSD may lead to the unpredicted change in the BHJ morphology and introduce additional defects inside the BHJ bulk thus complicate the fabrication process. Here, a simple oscillating stratification preprocessing (OSP) is developed to facilitate the formation of graded VPS among the BHJ layer. As a result, a significant improvement is obtained in PCE from 10.96% to 12.03%, which is the highest value reported among PBDB-T: ITIC based NFOSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, N.; Zhang, Q. Q.; Rech, J. J.; Dai, S. X.; Peng, Z. X.; Ade, H.; Wang, J. Y.; Zhan, X. W.; You, W. The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Res. 2019, 12, 2400–2405.

    Article  CAS  Google Scholar 

  2. Hou, J. H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–28.

    Article  CAS  Google Scholar 

  3. Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 2018, 30, 1800388.

    Article  Google Scholar 

  4. Burlingame, Q.; Huang, X. H.; Liu, X.; Jeong, C.; Coburn, C.; Forrest, S. R. Intrinsically stable organic solar cells under high-intensity illumination. Nature 2019, 573, 394–397.

    Article  CAS  Google Scholar 

  5. Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304–12.

    Article  CAS  Google Scholar 

  6. Zheng, Y. F.; Kong, J.; Huang, D.; Shi, W.; McMillon-Brown, L.; Katz, H. E.; Yu, J. S.; Taylor, A. D. Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale 2018, 10, 11342–11348.

    Article  CAS  Google Scholar 

  7. Fan, P.; Zheng, Y. F.; Song, J. S.; Yu, J. S. N-type small molecule as an interfacial modification layer for efficient inverted polymer solar cells. Sol. Energy 2017, 158, 278–284.

    Article  CAS  Google Scholar 

  8. Zhao, W. C.; Qian, D. P.; Zhang, S. Q.; Li, S. S.; Inganäs, O.; Gao, F.; Hou, J. H. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739.

    Article  CAS  Google Scholar 

  9. Fan, P.; Zhang, D. Y.; Wu, Y.; Yu, J. S.; Russell, T. P. Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells. Adv. Funct. Mater. 2020, 30, 2002932.

    Article  CAS  Google Scholar 

  10. Chen, S. S.; Wang, Y. M.; Zhang, L.; Zhao, J. B.; Chen, Y. Z.; Zhu, D. L.; Yao, H. T.; Zhang, G. Y.; Ma, W.; Friend, R. H. et al. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv. Mater. 2018, 30, 1804215.

    Article  Google Scholar 

  11. Facchetti, A. Across the board: Antonio facchetti. ChemSusChem 2018, 11, 3829–3833.

    Article  CAS  Google Scholar 

  12. Yu, R. N.; Yao, H. F.; Hong, L.; Qin, Y. P.; Zhu, J.; Cui, Y.; Li, S. S.; Hou, J. H. Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat. Commun. 2018, 9, 4645.

    Article  Google Scholar 

  13. Zheng, Y. F.; Huang J.; Wang, G.; Kong, J.; Huang, D.; Beromi, M. M.; Hazari, N.; Taylor, A. D.; Yu, J. S. A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent. Mater. Today 2018, 21, 79–87.

    Article  CAS  Google Scholar 

  14. Kong, T. Y.; Wang, H. Y.; Zhang, W. J.; Fan, P.; Yu, J. S. Simple alcohol solvent treatment enables efficient non-fullerene organic solar cells. J. Phys. D Appl. Phys. 2019, 52, 195104.

    Article  CAS  Google Scholar 

  15. Zheng, Y. F.; Wang, G.; Huang, D.; Kong, J.; Goh, T. H.; Huang, W.; Yu, J. S.; Taylor, A. D. Binary solvent additives treatment boosts the efficiency of PTB7: PCBM polymer solar cells to over 9.5%. Sol. RRL 2018, 2, 1700144.

    Article  Google Scholar 

  16. Huang, L. Q.; Wang, G.; Zhou, W. H.; Fu, B. Y.; Cheng, X. F.; Zhang, L. F.; Yuan, Z. B.; Xiong, S. X.; Zhang, L.; Xie, Y. P. et al. Vertical stratification engineering for organic bulk-heterojunction devices. ACS Nano 2018, 72, 4440–4452.

    Article  Google Scholar 

  17. Huang, J.; Wang, H. Y.; Yan, K. R.; Zhang, X. H.; Chen, H. Z.; Li, C. Z.; Yu, J. S. Highly efficient organic solar cells consisting of double bulk heterojunction layers. Adv. Mater. 2017, 29, 1606729.

    Article  Google Scholar 

  18. Lee, H.; Park, C.; Sin, D. H.; Park, J. H.; Cho, K. Recent advances in morphology optimization for organic photovoltaics. Adv. Mater. 2018, 30, 1800453.

    Article  Google Scholar 

  19. Zhang, L. F.; Yi, N.; Zhou, W. H.; Yu, Z. K. N.; Liu, F.; Chen, Y. W. Miscibility tuning for optimizing phase separation and vertical distribution toward highly efficient organic solar cells. Adv. Sci. 2019, 6, 1900565.

    Article  Google Scholar 

  20. Li, J. L.; Liu, J. K.; Tu, G. L. Vertically phase-separation based on amination-functionalized fullerene derivatives in inverted polymer solar cells. Sol. Energy 2019, 181, 405–413.

    Article  CAS  Google Scholar 

  21. Zheng, D.; Peng, R. X.; Wang, G.; Logsdon, J. L.; Wang, B. H.; Hu, X. B.; Chen, Y.; Dravid, V. P.; Wasielewski, M. R.; Yu, J. S. et al. Simultaneous bottom-up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small-molecule electrolytes. Adv. Mater. 2019, 31, 1903239.

    Article  CAS  Google Scholar 

  22. Zhao, D.; Huang, J.; Qin, R. H.; Yang, G. J.; Yu, J. S. Efficient visible-near-infrared hybrid perovskite: PBS quantum dot photodetectors fabricated using an antisolvent additive solution process. Adv. Opt. Mater. 2018, 6, 1800979.

    Article  Google Scholar 

  23. Hu, Z. H.; Wang, J.; Wang, Z.; Gao, W.; An, Q. S.; Zhang, M.; Ma, X. L.; Wang, J. X.; Miao, J. L.; Yang, C. L. et al. Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 2019, 55, 424–432.

    Article  CAS  Google Scholar 

  24. Mao, Y. C.; Li, W.; Chen, M. X.; Chen, X. L.; Gurney, R. S.; Liu, D.; Wang, T. Evolution of molecular aggregation in bar-coated non-fullerene organic solar cells. Mater. Chem. Front. 2019, 3, 1062–1070.

    Article  CAS  Google Scholar 

  25. Datt, R.; Suman; Bagui, A.; Siddiqui, A.; Sharma, R.; Gupta, V.; Yoo, S.; Kumar, S.; Singh, S. P. Effectiveness of solvent vapor annealing over thermal annealing on the photovoltaic performance of non-fullerene acceptor based BHJ solar cells. Sci. Rep. 2019, 9, 8529.

    Article  Google Scholar 

  26. Wang, Q. F.; Zhang, W. H.; Zhang, Z. H.; Liu, S.; Wu, J. W.; Guan, Y. J.; Mei, A. Y.; Rong, Y. G.; Hu, Y.; Han, H. W. Crystallization control of ternary-cation perovskite absorber in triple-mesoscopic layer for efficient solar cells. Adv. Energy Mater. 2020, 10, 1903092.

    Article  CAS  Google Scholar 

  27. Lami, V.; Weu, A.; Zhang, J. B.; Chen, Y. S.; Fei, Z. P.; Heeney, M.; Friend, R. H.; Vaynzof, Y. Visualizing the vertical energetic landscape in organic photovoltaics. Joule 2019, 3, 2513–2534.

    Article  CAS  Google Scholar 

  28. Naylor, M. A.; Swift, M. R.; King, P. J. Air-driven brazil nut effect. Phys. Rev. E 2003, 68, 012301.

    Article  CAS  Google Scholar 

  29. Hu, K. W.; Xie, Z. A.; Wu, P.; Sun, J.; Li, L.; Jia, C.; Zhang, S. P.; Liu, C. P.; Wang, L. Convecting particle diffusion in a binary particle system under vertical vibration. Soft Matter 2014, 10, 4348–4359.

    Article  CAS  Google Scholar 

  30. Liang, Q. J.; Han, J.; Song, C. P.; Yu, X. H.; Smilgies, D. M.; Zhao, K.; Liu, J. G.; Han, Y. C. Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 2018, 6, 15610–15620.

    Article  CAS  Google Scholar 

  31. Zhao, W. C.; Zhang, S. Q.; Hou, J. H. Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization. Sci. China Chem. 2016, 59, 1574–1582.

    Article  CAS  Google Scholar 

  32. Zheng, N. N.; Wang, Z. F.; Zhang, K.; Li, Y.; Huang, F.; Cao, Y. High-performance inverted polymer solar cells without an electron extraction layer via a one-step coating of cathode buffer and active layer. J. Mater. Chem. A 2019, 7, 1429–1434.

    Article  CAS  Google Scholar 

  33. Clement, C. P.; Pacheco-Martinez, H. A.; Swift, M. R.; King, P. J. The water-enhanced Brazil nut effect. EPL-Europhys. Lett. 2010, 91, 54001.

    Article  Google Scholar 

  34. Möbius, M. E.; Lauderdale, B. E.; Nagel, S. R.; Jaeger, H. M. Size separation of granular particles. Nature 2001, 414, 270.

    Article  Google Scholar 

  35. Maurel, C.; Ballouz, R. L.; Richardson, D. C.; Michel, P.; Schwartz, S. R. Numerical simulations of oscillation-driven regolith motion: Brazil-nut effect. Mon. Not. R. Astron. Soc. 2017, 464, 2866–2881.

    Article  Google Scholar 

  36. Brito, R.; Soto, R. Competition of brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. Spec. Top. 2009, 179, 207–219.

    Article  Google Scholar 

  37. Zhang, D. Y.; Hu, R.; Cheng, J.; Chang, Y. Q.; Huo, M. M.; Yu, J. S.; Li, L.; Zhang, J. P. Appropriate donor-acceptor phase separation structure for the enhancement of charge generation and transport in polymer solar cells. Polymers 2018, 10, 332.

    Article  Google Scholar 

  38. Dudem, B.; Jung, J. W.; Yu, J. S. Improved light harvesting efficiency of semitransparent organic solar cells enabled by broadband/omnidirectional subwavelength antireflective architectures. J. Mater. Chem. A 2018, 6, 14769–14779.

    Article  CAS  Google Scholar 

  39. Hedley, G. J.; Ruseckas, A.; Samuel I. D. W. Light harvesting for organic photovoltaics. Chem. Rev. 2017, 117, 796–837.

    Article  CAS  Google Scholar 

  40. Tu, Y. G.; Xu, G. N.; Yang, X. Y.; Zhang, Y. F.; Li, Z. J.; Su, R.; Luo, D. Y.; Yang, W. Q.; Miao, Y.; Cai, R. et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 2019, 62, 974221.

    Article  Google Scholar 

  41. Wang, Y. L.; Zhu, Q. L.; Naveed, H. B.; Zhao, H.; Zhou, K.; Ma, W. Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells. Adv. Energy Mater. 2020, 10, 1903609.

    Article  CAS  Google Scholar 

  42. Chen, X. B.; Xu, G. Y.; Zeng, G.; Gu, H. W.; Chen, H. Y.; Xu, H. T.; Yao, H. F.; Li, Y. W.; Hou, J. H.; Li, Y. F. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 2020, 32, 1908478.

    Article  CAS  Google Scholar 

  43. Gao, W.; An, Q. S.; Hao, M. H.; Sun, R.; Yuan, J.; Zhang, F. J.; Ma, W.; Min, J.; Yang, C. L. Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv. Funct. Mater. 2020, 30, 1908336.

    Article  CAS  Google Scholar 

  44. Wang, H. Y.; Huang, J.; Xing, S.; Yu, J. S. Improved mobility and lifetime of carrier for highly efficient ternary polymer solar cells based on Tips-pentacene in PTB7: PC71BM. Org. Electron. 2016, 28, 11–19.

    Article  CAS  Google Scholar 

  45. Nejand, B. A.; Hossain, I. M.; Jakoby, M.; Moghadamzadeh, S.; Abzieher, T.; Gharibzadeh, S.; Schwenzer, J. A.; Nazari, P.; Schackmar, F.; Hauschild, D. et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv. Energy Mater. 2020, 10, 1902583.

    Article  Google Scholar 

  46. Gao, J. H.; Gao, W.; Ma, X. L.; Hu, Z. H.; Xu, C. Y.; Wang, X. L.; An, Q. S.; Yang, C. L.; Zhang, X. L.; Zhang, F. J. Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy Environ. Sci. 2020, 13, 958–967.

    Article  CAS  Google Scholar 

  47. Xie, Y. P.; Li, T. F.; Guo, J.; Bi, P. Q.; Xue, X. N.; Ryu, H. S.; Cai, Y. H.; Min, J.; Huo, L. J.; Hao, X. T. et al. Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 2019, 4, 1196–1203.

    Article  CAS  Google Scholar 

  48. Yang, W. T.; Ye, L.; Yao, F. F.; Jin, C. H.; Ade, H.; Chen, H. Z. Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Res. 2019, 12, 777–783.

    Article  CAS  Google Scholar 

  49. Xu, H.; Zhang, L.; Ding, Z. C.; Hu, J. L.; Liu, J.; Liu, Y. C. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018, 11, 4293–4301.

    Article  CAS  Google Scholar 

  50. An, Q. S.; Wang, J.; Gao, W.; Ma, X. L.; Hu, Z. H.; Gao, J. H.; Xu, C. Y.; Hao, M. H.; Zhang, X. L.; Yang, C. L. et al. Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci. Bull. 2020, 65, 538–545.

    Article  CAS  Google Scholar 

  51. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  52. Bi, P. Q.; Xiao, T.; Yang, X. Y.; Niu, M. S.; Wen, Z. C.; Zhang, K. N.; Qin, W.; So, S. K.; Lu, G. H.; Hao, X. T. et al. Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells. Nano Energy 2018, 46, 81–90.

    Article  CAS  Google Scholar 

  53. Xing, S.; Wang, H. Y.; Zheng, Y. F.; Yu, J. S. Förster resonance energy transfer and energy cascade with a favorable small molecule in ternary polymer solar cells. Sol. Energy 2016, 139, 221–227.

    Article  CAS  Google Scholar 

  54. Douhéret, O.; Lutsen, L.; Swinnen, A.; Breselge, M.; Vandewal, K.; Goris, L.; Manca, J. Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy. Appl. Phys. Lett. 2006, 89, 032107.

    Article  Google Scholar 

  55. Mikulik, D.; Ricci, M.; Tutuncuoglu, G.; Matteini, F.; Vukajlovic, J.; Vulic, N.; Alarcon-Llado, E.; Morral, A. F. I. Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells. Nano Energy 2017, 41, 566–572.

    Article  CAS  Google Scholar 

  56. Zheng, Z.; Hu, Q.; Zhang, S. Q.; Zhang, D. Y.; Wang, J. Q.; Xie, S. K.; Wang, R.; Qin, Y. P.; Li, W. N.; Hong, L. et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 2018, 30, 1801801.

    Article  Google Scholar 

  57. Kim, Y. H.; Kim, D. G.; Maduwu, R. D.; Jin, H. C.; Moon, D. K.; Kim, J. H. Organic electrolytes doped ZnO layer as the electron transport layer for bulk heterojunction polymer solar cells. Sol. RRL 2018, 2, 1800086.

    Article  Google Scholar 

  58. Wang, X.; Zhang, D. D.; Jin, H.; Poliquit, B. Z.; Philippa, B.; Nagiri, R. C. R.; Subbiah, J.; Jones, D. J.; Ren, W. C.; Du, J. H. et al. Graphene-based transparent conducting electrodes for high efficiency flexible organic photovoltaics: Elucidating the source of the power losses. Sol. RRL 2019, 3, 1900042.

    Article  Google Scholar 

  59. Liu, X. Y.; Yan, Y. J.; Yao, Y.; Liang, Z. Q. Ternary blend strategy for achieving high-efficiency organic solar cells with nonfullerene acceptors involved. Adv. Funct. Mater. 2018, 28, 1802004.

    Article  Google Scholar 

  60. Zheng, Y. F.; Su, R.; Xu, Z. J.; Luo, D. Y.; Dong, H.; Jiao, B.; Wu, Z. X.; Gong, Q. H.; Zhu, R. Perovskite solar cell towards lower toxicity: A theoretical study of physical lead reduction strategy. Sci. Bull. 2019, 64, 1255–1261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of National Natural Science Foundation of China (NSFC) (Grant Nos. 61421002, 61675041, and 51703019), and Sichuan Science and Technology Program (Grant Nos. 2019YFG0121, 2019YJ0178, 2020YFG0279, and 2020YFG0281), and the China Scholarship Council (No. 201806070051). This work is also sponsored by the Sichuan Province Key Laboratory of Display Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifan Zheng, Jian Zhong or Junsheng Yu.

Electronic Supplementary Material

12274_2020_3169_MOESM1_ESM.pdf

Control of vertical phase separation in high performance non-fullerene organic solar cell by introducing oscillating stratification preprocessing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Fan, P., Shi, J. et al. Control of vertical phase separation in high performance non-fullerene organic solar cell by introducing oscillating stratification preprocessing. Nano Res. 14, 1319–1325 (2021). https://doi.org/10.1007/s12274-020-3169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3169-y

Keywords

Navigation