Skip to main content
Log in

Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of efficient non-precious catalysts for seawater electrolysis is of great significance but challenging due to the sluggish kinetics of oxygen evolution reaction (OER) and the impairment of chlorine electrochemistry at anode. Herein, we report a heterostructure of Ni3S2 nanoarray with secondary Fe-Ni(OH)2 lamellar edges that exposes abundant active sites towards seawater oxidation. The resultant Fe-Ni(OH)2/Ni3S2 nanoarray works directly as a free-standing anodic electrode in alkaline artificial seawater. It only requires an overpotential of 269 mV to afford a current density of 10 mA·cm−2 and the Tafel slope is as low as 46 mV·dec−1. The 27-hour chronopotentiometry operated at high current density of 100 mA·cm−2 shows negligible deterioration, suggesting good stability of the Fe·Ni(OH)2/Ni3S2@NF electrode. Faraday efficiency for oxygen evolution is up to ∼ 95%, revealing decent selectivity of the catalyst in saline water. Such desirable catalytic performance could be benefitted from the introduction of Fe activator and the heterostructure that offers massive active and selective sites. The density functional theory (DFT) calculations indicate that the OER has lower theoretical overpotential than Cl2 evolution reaction in Fe sites, which is contrary to that of Ni sites. The experimental and theoretical study provides a strong support for the rational design of high-performance Fe-based electrodes for industrial seawater electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  CAS  Google Scholar 

  2. Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273.

    Article  CAS  Google Scholar 

  3. Fu, L. H.; Li, Y. B.; Yao, N.; Yang, F. L.; Cheng, G. Z.; Luo, W. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal. 2020, 10, 7322–7327.

    Article  CAS  Google Scholar 

  4. Dou, S. M.; Xu, J.; Cui, X. Y.; Liu, W. D.; Zhang, Z. C.; Deng, Y. D.; Hu, W. B.; Chen, Y. N. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 2020, 10, 2001331.

    Article  CAS  Google Scholar 

  5. Xie, X. H.; Song, M.; Wang, L. G; Engelhard, M. H.; Luo, L. L.; Miller, A.; Zhang, Y. Y.; Du, L.; Pan, H. L.; Nie, Z. M. et al. Electrocatalytic hydrogen evolution in neutral pH solutions: Dual-phase synergy. ACS Catal. 2019, 9, 8712–8718.

    Article  CAS  Google Scholar 

  6. Fan, C.; Jiang, X.; Chen, J. Y.; Wang, X.; Qian, S. Y.; Zhao, C. Z.; Ding, L. F.; Sun, D. M.; Tang, Y. W. Low-load Pt nanoclusters anchored on graphene hollow spheres for efficient hydrogen evolution. Small Struct, in press, DOI: https://doi.org/10.1002/sstr.202000017.

  7. Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.

    Article  CAS  Google Scholar 

  8. Wu, H.; Lu, Q.; Zhang, J. F.; Wang, J. J.; Han, X. P.; Zhao, N. Q.; Hu, W. B.; Li, J. J.; Chen, Y. N.; Deng, Y. D. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett. 2020, 12, 162.

    Article  CAS  Google Scholar 

  9. Zhang, J.; Chen, Z. L.; Liu, C.; Zhao, J.; Liu, S. L.; Rao, D. W.; Nie, A. M.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Sci. China Mater. 2020, 63, 249–257.

    Article  CAS  Google Scholar 

  10. Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser. P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

    Article  CAS  Google Scholar 

  11. Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci., in press, DOI: https://doi.org/10.1039/D0EE00921K.

  12. Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.

    Article  CAS  Google Scholar 

  13. Keane, T. P.; Nocera, D. G. Selective production of oxygen from seawater by oxidic metallate catalysts. ACS Omega 2019, 4, 12860–12864.

    Article  CAS  Google Scholar 

  14. Chen, Y. N.; Xu, S. M.; Zhu, S. Z.; Jacob, R. J.; Pastel, G; Wang, Y. B.; Li, Y. J.; Dai, J. Q.; Chen, F. J.; Xie, H. et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res. 2019, 12, 2259–2267.

    Article  CAS  Google Scholar 

  15. Hao, C. Y.; Wu, Y.; An, Y. J.; Cui, B. H.; Lin, J. N.; Li, X. N.; Wang, D. H.; Jiang, M. H.; Cheng, Z. X.; Hu, S. Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst. Mater. Today Energy 2019, 12, 453–462.

    Article  Google Scholar 

  16. Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

    Article  CAS  Google Scholar 

  17. Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

    Article  CAS  Google Scholar 

  18. Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962–972.

    Article  CAS  Google Scholar 

  19. Okada, T.; Abe, H.; Murakami, A.; Shimizu, T.; Fujii, K.; Wakabayashi, T.; Nakayama, M. A bilayer structure composed of Mg|Co-MnO2 deposited on a Co(OH)2 film to realize selective oxygen evolution from chloride-containing water. Langmuir 2020, 36, 5227–5235.

    Article  CAS  Google Scholar 

  20. Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270–10281.

    Article  CAS  Google Scholar 

  21. Zhao, Y. Q.; Jin, B.; Zheng, Y.; Jin, H. Y.; Jiao, Y.; Qiao, S. Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 2018, 8, 1801926.

    Article  CAS  Google Scholar 

  22. Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761–12769.

    Article  CAS  Google Scholar 

  23. Kato, Z.; Sato, M.; Sasaki, Y.; Izumiya, K.; Kumagai, N.; Hashimoto, K. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochim. Acta 2014, 116, 152–157.

    Article  CAS  Google Scholar 

  24. Juodkazytė, J.; Šebeka, B.; Savickaja, I.; Petrulevičienė, M.; Butkutė, S.; Jasulaitienė, V.; Selskis, A.; Ramanauskas, R. Electrolytic splitting of saline water: Durable nickel oxide anode for selective oxygen evolution. Int. J. Hydrogen Energy 2019, 44, 5929–5939.

    Article  CAS  Google Scholar 

  25. Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

    Article  CAS  Google Scholar 

  26. Huang, W. H.; Lin, C. Y. Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discuss. 2019, 215, 205–215.

    Article  CAS  Google Scholar 

  27. Zhao, Y. Q.; Jin, B.; Vasileff, A.; Jiao, Y.; Qiao, S. Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 2019, 7, 8117–8121.

    Article  CAS  Google Scholar 

  28. Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−FexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

    Article  CAS  Google Scholar 

  29. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.

    Article  CAS  Google Scholar 

  30. Yuan, T. B.; Hu, Z.; Zhao, Y. X.; Fang, J. J.; Lv, J.; Zhang, Q. H.; Zhuang, Z. B.; Gu, L.; Hu, S. Two-dimensional amorphous SnOx from liquid metal: Mass production, phase transfer, and electrocatalytic CO2 reduction toward formic acid. Nano Lett. 2020, 20, 2916–2922.

    Article  CAS  Google Scholar 

  31. Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou. X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    Article  CAS  Google Scholar 

  32. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  CAS  Google Scholar 

  33. Chen, M. X.; Lu, S. L.; Fu, X. Z.; Luo, J. L. Core-shell structured NiFeSn@NiFe (oxy)hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction. Adv. Sci. 2020, 7, 1903777.

    Article  CAS  Google Scholar 

  34. Fang, M.; Han, D.; Xu, W. B.; Shen, Y.; Lu, Y. M.; Cao, P. J.; Han, S.; Xu, W. Y.; Zhu, D. L.; Liu, W. J. et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 2020, 10, 2001059.

    Article  CAS  Google Scholar 

  35. Cui, B. H.; Zhang, M.; Zhao, Y. X.; Hu, S. Heterogenization of few-layer MoS2 with highly crystalline 3D Ni3S2 nanoframes effectively synergizes the electrocatalytic hydrogen generation in alkaline medium. Mater. Today Energy 2019, 13, 85–92.

    Article  Google Scholar 

  36. Bantignies, J. L.; Deabate, S.; Righi, A.; Rols, S.; Hermet, P.; Sauvajol, J. L.; Henn, F. New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and Raman spectroscopies. J. Phys. Chem. C 2008, 112, 2193–2201.

    Article  CAS  Google Scholar 

  37. Zong, L. B.; Chen, X.; Dou, S. M.; Fan, K. C.; Wang, Z. M.; Zhang, W. J.; Du, Y. M.; Xu, J.; Jia, X. F.; Zhang, Q. et al. Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chin. Chem. Lett., in press, DOI: https://doi.org/10.1016/j.cclet.2020.08.029.

  38. Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlogl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  39. Liu, C.; Chen, Z. L.; Rao, D. W.; Zhang, J. F.; Liu, Y. W.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Sci. China Mater. 2020, in press, DOI: https://doi.org/10.1007/s40843-020-1460-y.

  40. Li, J. W.; Lian, R. Q.; Wang, J. Y.; He, S.; Jiang, S. P.; Rui, Z. B. Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochim. Acta 2020, 331, 135395.

    Article  CAS  Google Scholar 

  41. Chen, F. S.; Liu, C.; Cui, B. H.; Dou, S. M.; Xu, J.; Liu, S. L.; Zhang, H.; Deng, Y. D.; Chen, Y. N.; Hu, W. B. Regulated synthesis of eutectic Ni3S2/NiS nanorods for quasi-solid-state hybrid supercapacitors with high energy density. J. Power Sources, 2021, 482, 228910.

    Article  CAS  Google Scholar 

  42. Yang, Z. B.; Liang, X. Self-magnetic-attracted NixFe(1−x)@Ni1Fe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461–466.

    Article  CAS  Google Scholar 

  43. Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.

    Article  CAS  Google Scholar 

  44. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  CAS  Google Scholar 

  45. Lee, S.; Bai, L. C.; Hu. X. L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew. Chem. 2020, 132, 8149–8154.

    Article  Google Scholar 

  46. Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Chargetransfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155–161.

    Article  CAS  Google Scholar 

  47. Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res., 2018, 11, 3509–3518.

    Article  CAS  Google Scholar 

  48. Xie, Q. X.; Cai, Z.; Li, P. S.; Zhou, D. J.; Bi, Y. M.; Xiong, X. Y.; Hu, E. Y.; Li, Y. P.; Kuang, Y.; Sun, X. M. Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano Res. 2018, 11, 4524–4534.

    Article  CAS  Google Scholar 

  49. Gorlin, M.; de Araujo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070–2082.

    Article  CAS  Google Scholar 

  50. Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.

    Article  CAS  Google Scholar 

  51. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  52. Hsu, S. H.; Miao, J. W.; Zhang, L. P.; Gao, J. J.; Wang, H. M.; Tao, H. B.; Hung, S. F.; Vasileff, A.; Qiao, S. Z.; Liu, B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 2018, 30, 1707261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 91963113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Wu, Yanan Chen, Lifeng Cui or Wenbin Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, B., Hu, Z., Liu, C. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 14, 1149–1155 (2021). https://doi.org/10.1007/s12274-020-3164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3164-3

Keywords

Navigation