Skip to main content
Log in

Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biomaterial based scaffolds for treating large bone defects require excellent biocompatibility and osteoconductivity. Here we report on the fabrication of hydroxyapatite-dendritic mesoporous silica nanoparticles (HA-DMSN) based scaffolds with hierarchical micro-pores (5 µm) and nano-pores (6.4 nm), and their application for bone regeneration. The in vitro studies demonstrated good biocompatibility of dissolution extracts, as well as enhanced osteogenic potential indicated by dose-dependent upregulation of bone marker gene expression (osteocalcin gene (OCN), osteopontin gene (OPN), collagen type I alpha 1 gene (CoL1A1), runt-related transcription factor 2 gene (RUNX2), and integrin-binding sialoprotein gene (IBSP)), alkaline phosphatise (ALP) activity, and alizarin red staining. The in vivo studies showed that HA-DMSN scaffolds significantly increased bone formation in a rat cranial bone defect model after 4 weeks healing. Our study provides a simple method to fabricate promising inorganic scaffolds with hierarchical pores for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Long, W. G. Jr.; Einhorn, T. A.; Koval, K.; McKee, M.; Smith, W.; Sanders, R.; Watson, T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J. Bone Joint Surg. Am. 2007, 89, 649–658.

    Google Scholar 

  2. Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18.

    Google Scholar 

  3. Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today 2013, 16, 496–504.

    CAS  Google Scholar 

  4. Cao, Y. X.; Xiao, L.; Cao, Y. F.; Nanda, A.; Xu, C.; Ye, Q. S. 3D printed ß-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochem. Biophys. Res. Commun. 2019, 512, 889–895.

    CAS  Google Scholar 

  5. Yi, H.; Rehman, F. U.; Zhao, C. Q.; Liu, B.; He, N. Y. Recent advances in Nano scaffolds for bone repair. Bone Res. 2016, 4, 16050.

    CAS  Google Scholar 

  6. Gong, T.; Xie, J.; Liao, J. F.; Zhang, T.; Lin, S. Y.; Lin, Y. F. Nanomaterials and bone regeneration. Bone Res. 2015, 3, 15029.

    CAS  Google Scholar 

  7. Hill, M. J.; Qi, B. W.; Bayaniahangar, R.; Araban, V.; Bakhtiary, Z.; Doschak, M. R.; Goh, B. C.; Shokouhimehr, M.; Vali, H.; Presley, J. F. et al. Nanomaterials for bone tissue regeneration: Updates and future perspectives. Nanomedicine 2019, 14, 2987–3006.

    CAS  Google Scholar 

  8. Xu, C.; Xiao, L.; Cao, Y. X.; He, Y.; Lei, C.; Xiao, Y.; Sun, W. J.; Ahadian, S.; Zhou, X. T.; Khademhosseini, A. et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 2020, 13, 2323–2331.

    CAS  Google Scholar 

  9. Ramay, H. R. R.; Zhang, M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 25, 5171–5180.

    CAS  Google Scholar 

  10. Wang, X. J.; Lou, T.; Zhao, W. H.; Song, G. J.; Li, C. Y.; Cui, G. P. The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. J. Biomater. Appl. 2016, 30, 1545–1551.

    CAS  Google Scholar 

  11. Lemaire, T.; Pham, T. T.; Capiez-Lernout, E.; De Leeuw, N. H.; Naili, S. Water in hydroxyapatite nanopores: Possible implications for interstitial bone fluid flow. J. Biomech. 2015, 48, 3066–3071.

    CAS  Google Scholar 

  12. You, L. D.; Weinbaum, S.; Cowin, S. C.; Schaffler, M. B. Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2004, 278A, 505–513.

    Google Scholar 

  13. Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

    CAS  Google Scholar 

  14. Vallet-Regí, M.; García, M. M.; Colilla, M. Biomedical Applications of Mesoporous Ceramics: Drug Delivery, Smart Materials and Bone Tissue Engineering; CRC Press, Boca Raton, 2012.

    Google Scholar 

  15. Xu, C.; Cao, Y. X.; Lei, C.; Li, Z. H.; Kumeria, T.; Meka, A. K.; Xu, J.; Liu, J. Y.; Yan, C.; Luo, L. H. et al. Polymer–mesoporous silica nanoparticle core–shell nanofibers as a dual-drug-delivery system for guided tissue regeneration. ACS Appl. Nano Mater. 2020, 3, 1457–1467.

    CAS  Google Scholar 

  16. Xu, C.; Lei, C.; Yu, C. Z. Mesoporous silica nanoparticles for protein protection and delivery. Front. Chem. 2019, 7, 290.

  17. Xu, C.; Lei, C.; Huang, L. L.; Zhang, J.; Zhang, H. W.; Song, H.; Yu, M. H.; Wu, Y. D.; Chen, C.; Yu, C. Z. Glucose-responsive nanosystem mimicking the physiological insulin secretion via an enzyme–polymer layer-by-layer coating strategy. Chem. Mater. 2017, 29, 7725–7732.

    CAS  Google Scholar 

  18. Xu, C.; Yu, M. H.; Noonan, O.; Zhang, J.; Song, H.; Zhang, H. W.; Lei, C.; Niu, Y. T.; Huang, X. D.; Yang, Y. N. et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small 2015, 11, 5949–5955.

    CAS  Google Scholar 

  19. Wu, C. T.; Zhang, Y. F.; Zhou, Y. H.; Fan, W.; Xiao, Y. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: Physiochemistry and in vivo osteogenesis. Acta Biomater. 2011, 7, 2229–2236.

    CAS  Google Scholar 

  20. Shi, M. C.; Zhou, Y. H.; Shao, J.; Chen, Z. T.; Song, B. T.; Chang, J.; Wu, C. T.; Xiao, Y. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015, 21, 178–189.

    CAS  Google Scholar 

  21. Shao, N. N.; Guo, J. S.; Guan, Y. Y.; Zhang, H. H.; Li, X. Y.; Chen, X. S.; Zhou, D. F.; Huang, Y. B. Development of organic/inorganic compatible and sustainably bioactive composites for effective bone regeneration. Biomacromolecules 2018, 19, 3637–3648.

    CAS  Google Scholar 

  22. Das, A.; Pamu, D. A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Mater. Sci. Eng.: C 2019, 101, 539–563.

    CAS  Google Scholar 

  23. Degli Esposti, M.; Chiellini, F.; Bondioli, F.; Morselli, D.; Fabbri, P. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Mater. Sci. Eng.: C 2019, 100, 286–296.

    CAS  Google Scholar 

  24. Bohner, M.; Galea, L.; Doebelin, N. Calcium phosphate bone graft substitutes: Failures and hopes. J. Eur. Ceram. Soc. 2012, 32, 2663–2671.

  25. Tasia, W.; Lei, C.; Cao, Y. X.; Ye, Q. S.; He, Y.; Xu, C. Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale 2020, 12, 2328–2332.

    CAS  Google Scholar 

  26. Li, H. M.; Guo, H. L.; Lei, C.; Liu, L.; Xu, L. Q.; Feng, Y. P.; Ke, J.; Fang, W.; Song, H.; Xu, C. et al. Nanotherapy in joints: Increasing endogenous hyaluronan production by delivering hyaluronan synthase 2. Adv. Mater. 2019, 31, 1904535.

  27. Xu, C.; Niu, Y. T.; Popat, A.; Jambhrunkar, S.; Karmakar, S.; Yu, C. Z. Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. J. Mater. Chem. B 2014, 2, 253–256.

    CAS  Google Scholar 

  28. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013}, 25, 3144–3

    CAS  Google Scholar 

  29. Lei, C.; Xu, C.; Nouwens, A.; Yu, C. Z. Ultrasensitive ELISA+ enhanced by dendritic mesoporous silica nanoparticles. J. Mater. Chem. B 2016, 4, 4975–4979.

    CAS  Google Scholar 

  30. Kalantari, M.; Ghosh, T.; Liu, Y.; Zhang, J.; Zou, J.; Lei, C.; Yu, C. Z. Highly thiolated dendritic mesoporous silica nanoparticles with high-content gold as nanozymes: The nano-gold size matters. ACS Appl. Mater. Interfaces 2019, 11, 13264–13272.

    CAS  Google Scholar 

  31. Chen, L.; Zhou, X. J.; He, C. L. Mesoporous silica nanoparticles for tissue-engineering applications. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1573.

  32. Trewyn, B. G.; Whitman, C. M.; Lin, V. S. Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett. 2004, 4, 2139–2143.

    CAS  Google Scholar 

  33. Izquierdo-Barba, I.; Colilla, M.; Vallet-Regí, M. Nanostructured mesoporous silicas for bone tissue regeneration. J. Nanomater. 2008, 2008, 106970.

  34. Zhou, X. J.; Weng, W. Z.; Chen, B.; Feng, W.; Wang, W. Z.; Nie, W.; Chen, L.; Mo, X. M.; Su, J. C.; He, C. L. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J. Mater. Chem. B 2018, 6, 740–752.

    CAS  Google Scholar 

  35. Qiu, K. X.; Chen, B.; Nie, W.; Zhou, X. J.; Feng, W.; Wang, W. Z.; Chen, L.; Mo, X. M.; Wei, Y. Z.; He, C. L. Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly(L-lactic acid)/poly(e-caprolactone) composite scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 4137–4148.

    CAS  Google Scholar 

  36. Yao, Q. Q.; Liu, Y. X.; Selvaratnam, B.; Koodali, R. T.; Sun, H. L. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J. Control. Release 2018, 279, 69–78.

    CAS  Google Scholar 

  37. Cui, W.; Liu, Q. Q.; Yang, L.; Wang, K.; Sun, T. F.; Ji, Y. H.; Liu, L. P.; Yu, W.; Qu, Y. Z.; Wang, J. W. et al. Sustained delivery of BMP-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration. ACS Biomater. Sci. Eng. 2018, 4, 211–221.

    CAS  Google Scholar 

  38. Fu, J. Y.; Gu, Z. Y.; Liu, Y.; Zhang, J.; Song, H.; Yang, Y. N.; Yang, Y.; Noonan, O.; Tang, J.; Yu, C. Z. Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem. Sci. 2019, 10, 10388–10394.

    CAS  Google Scholar 

  39. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Google Scholar 

  40. Mathew, A.; Vaquette, C.; Hashimi, S.; Rathnayake, I.; Huygens, F.; Hutmacher, D. W.; Ivanovski, S. Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration. Adv. Healthc. Mater. 2017, 6, 1601345.

  41. Nejati, E.; Mirzadeh, H.; Zandi, M. Synthesis and characterization of Nano-hydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering. Compos. Part A: Appl. Sci. Manuf. 2008, 39, 1589–1596.

    Google Scholar 

  42. Mishra, V. K.; Rai, S. B.; Asthana, B. P.; Parkash, O.; Kumar, D. Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: Structural and spectroscopic studies. Ceram. Int. 2014, 40, 11319–11328.

    CAS  Google Scholar 

  43. Li, T. T.; Liu, Y.; Qi, S. C.; Liu, X. Q.; Huang, L.; Sun, L. B. Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. J. Colloid Interface Sci. 2018, 526, 366–373.

    CAS  Google Scholar 

  44. Kwon, B. J.; Kim, J.; Kim, Y. H.; Lee, M. H.; Baek, H. S.; Lee, D. H.; Kim, H. L.; Seo, H. J.; Lee, M. H.; Kwon, S. Y. et al. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Artif. Organs 2013, 37, 663–670.

    CAS  Google Scholar 

  45. Kuang, Y.; Yuan, D.; Zhang, Y.; Kao, A.; Du, X. W.; Xu, B. Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Adv. 2013, 3, 7704–7707.

    CAS  Google Scholar 

  46. Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491.

    CAS  Google Scholar 

  47. Tang, J. C.; Gu, Y.; Zhang, H. B.; Wu, L.; Xu, Y.; Mao, J. N.; Xin, T. W.; Ye, T. J.; Deng, L. F.; Cui, W. G. et al. Outer–inner dual reinforced micro/Nano hierarchical scaffolds for promoting osteogenesis. Nanoscale 2019, 11, 15794–15803.

    CAS  Google Scholar 

  48. Pei, X.; Ma, L.; Zhang, B. Q.; Sun, J. X.; Sun, Y.; Fan, Y. J.; Gou, Z. R.; Zhou, C. C.; Zhang, X. D. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication 2017, 9, 045008.

  49. Barbieri, D.; Yuan, H. P.; Luo, X. M.; Farè, S.; Grijpma, D. W.; De Bruijn, J. D. Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration. Acta Biomater. 2013, 9, 9401–9413.

    CAS  Google Scholar 

  50. Groen, N.; Yuan, H. P.; Hebels, D. G. A, J.; Koçer, G.; Mbuyi, F.; LaPointe, V.; Truckenmüller, R.; Van Blitterswijk, C. A.; Habibovic, P.; De Boer, J. Linking the transcriptional landscape of bone induction to biomaterial design parameters. Adv. Mater. 2017, 29, 1603259.

  51. Vallet-Regí, M.; Ruiz-González, L.; Izquierdo-Barba, I.; González-Calbet, J. M. Revisiting silica based ordered mesoporous materials: Medical applications. J. Mater. Chem. 2006, 16, 26–31.

    Google Scholar 

  52. Vallet-Regí, M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem.–Eur. J. 2006, 12, 5934–5943.

    Google Scholar 

  53. Balas, F.; Manzano, M.; Horcajada, P.; Vallet-Regí, M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J. Am. Chem. Soc. 2006, 128, 8116–8117.

    CAS  Google Scholar 

  54. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic—inorganic hybrid materials. Angew. Chem., Int. Ed. 2006, 45, 3216–3251.

    CAS  Google Scholar 

  55. Hoffmann, F.; Fröba, M. J. C. S. R. Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev. 2011, 40, 608–620.

    CAS  Google Scholar 

  56. Carlisle, E. M. Silicon: A possible factor in bone calcification. Science 1970, 167, 279–280.

    CAS  Google Scholar 

  57. Carlisle, E. M. In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J. Nutr. 1976, 106, 478–484.

    CAS  Google Scholar 

  58. Dashnyam, K.; Jin, G. Z.; Kim, J. H.; Perez, R.; Jang, J. H.; Kim, H. W. Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials 2017, 116, 145–157.

    CAS  Google Scholar 

  59. Kong, C. H.; Steffi, C.; Shi, Z. L.; Wang, W. Development of mesoporous bioactive glass nanoparticles and its use in bone tissue engineering. 2018, J. Biomed. Mater. Res. Part B: Appl. Biomater. 2018, 106, 2878–2887.

    CAS  Google Scholar 

  60. Dai, C. L.; Guo, H.; Lu, J. X.; Shi, J. L.; Wei, J.; Liu, C. S. Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based µCT. Biomaterials 2011, 32, 8506–8517.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from University of Queensland (UQ) Early Career Researcher Grant (No. 1717673). C. Lei acknowledges the support of Advanced Queensland Fellowship. C. Xu acknowledges the support of National Health & Medical Research Council of Australia (NHMRC) Early Career Fellowship. S. Hosseinpour acknowledges the support of The University of Queensland International (UQI) Scholarship. The authors acknowledge the supports from the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saso Ivanovski or Chun Xu.

Electronic supplementary material

12274_2020_3112_MOESM1_ESM.pdf

Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, C., Cao, Y., Hosseinpour, S. et al. Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Res. 14, 770–777 (2021). https://doi.org/10.1007/s12274-020-3112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3112-2

Keywords

Navigation