Skip to main content
Log in

Highly active sites of low spin FeIIN4 species: The identification and the ORR performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Over recent years, catalytic materials of Fe-N-C species have been recognized being active for oxygen reduction reaction (ORR). However, the identification of active site remains challenging as it generally involves a pyrolysis process and mixed components being obtained. Herein Fe3C/C and Fe2N/C samples were synthesized by temperature programmed reduction of Fe precursors in 15% CH4/H2 and pure NH3, respectively. By acid leaching of Fe2N/C sample, only single sites of FeN4 species were presented, providing an ideal model for identification of catalytic functions of the single sites of FeN4 in ORR. A correlation was conducted between the concentration of FeIIN4 in low spin state by Mössbauer spectra and the kinetic current density at 0.8 V in alkaline media, and such a structure-performance correlation assures the catalytic roles of low spin FeIIN4 species as highly active sites for the ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414 345–352.

    CAS  Google Scholar 

  2. Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135 16002–16005.

    CAS  Google Scholar 

  3. Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4 2076.

    Google Scholar 

  4. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486 43–51.

    CAS  Google Scholar 

  5. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20 6206–6214.

    CAS  Google Scholar 

  6. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324 71–74.

    Google Scholar 

  7. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13 1842–1855.

    CAS  Google Scholar 

  8. Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J. Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26 5708–5717.

    CAS  Google Scholar 

  9. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27 5010–5016.

    CAS  Google Scholar 

  10. Guan, B. Y.; Yu, L.; Lou, X. W. A dual-metal-organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 2016, 9 3092–3096.

    CAS  Google Scholar 

  11. Liang, H. W.; Zhuang, X. D.; Bruller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5 4973.

    CAS  Google Scholar 

  12. Lee, S. H.; Kim, J.; Chung, D. Y.; Yoo, J. M.; Lee, H. S.; Kim, M. J.; Mun, B. S.; Kwon, S. G.; Sung, Y. E.; Hyeon, T. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures? J. Am. Chem. Soc. 2019, 141 2035–2045.

    CAS  Google Scholar 

  13. Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56 610–614.

    CAS  Google Scholar 

  14. You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5 7068–7076.

    CAS  Google Scholar 

  15. Wan, W. J.; Liu, X. J.; Li, H. Y.; Peng, X. Y.; Xi, D. S.; Luo, J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2019, 240 193–200.

    CAS  Google Scholar 

  16. Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201 1212–1213.

    CAS  Google Scholar 

  17. Tang, H. L.; Zeng, Y.; Zeng, Y. X.; Wang, R.; Cai, S. C.; Liao, C.; Cai, H. P.; Lu, X. H.; Tsiakaras, P. Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells. Appl. Catal. B: Environ. 2017, 202 550–556.

    CAS  Google Scholar 

  18. Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboolike carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137 1436–1439.

    CAS  Google Scholar 

  19. Sebastián, D.; Serov, A.; Matanovic, I.; Artyushkova, K.; Atanassov, P.; Aricò, A. S.; Baglio, V. Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy 2017, 34 195–204.

    Google Scholar 

  20. Li, C. H.; Liu, H. X.; Yu, Z. Y. Novel and multifunctional inorganic mixing salt-templated 2D ultrathin Fe/Co-N/S-carbon nanosheets as effectively bifunctional electrocatalysts for Zn-air batteries. J. Am. Chem. Soc. 2019, 241 95–103.

    CAS  Google Scholar 

  21. Hu, B. C.; Wu, Z. Y.; Chu, S. Q.; Zhu, H. W.; Liang, H. W.; Zhang, J.; Yu, S. H. SiO2-protected shell mediated templating synthesis of FeN-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 2018, 11 2208–2215.

    CAS  Google Scholar 

  22. Thorum, M. S.; Hankett, J. M.; Gewirth, A. A. Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: Evidence for metal-centered activity. J. Phys. Chem. Lett. 2011, 2 295–298.

    CAS  Google Scholar 

  23. Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27 2521–2527.

    CAS  Google Scholar 

  24. Wei, J.; Hu, Y. X.; Liang, Y.; Kong, B.; Zhang, J.; Song, J. C.; Bao, Q. L.; Simon, G. P.; Jiang, S. P.; Wang, H. T. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 2015, 25 5768–5777.

    CAS  Google Scholar 

  25. Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D. W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53 10673–10677.

    CAS  Google Scholar 

  26. Li, Q. R.; Wan, G.; Zhao, H.; Pan, L. Y.; Wang, N.; Zhao, W. P.; Zhou, X. X.; Cui, X. Z.; Chen, H. R. Nitrogen-doped carbon vesicles with dual iron-based sites for efficient oxygen reduction. ChemSusChem 2017, 10 499–505.

    Google Scholar 

  27. Guan, B. Y.; Zhang, S. L.; Lou, X. W. D. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2018, 57 6176–6180.

    CAS  Google Scholar 

  28. Yuan, K.; Sfaelou, S.; Qiu, M.; Lützenkirchen-Hecht, D.; Zhuang, X. D.; Chen, Y. W.; Yuan, C.; Feng, X. L.; Scherf, U. Synergetic contribution of boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 2018, 3 252–260.

    CAS  Google Scholar 

  29. Lefèvre, M.; Dodelet, J. P.; Bertrand, P. Molecular oxygen reduction in PEM fuel cells: Evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B 2002, 106 8705–8713.

    Google Scholar 

  30. Kabir, S.; Artyushkova, K.; Kiefer, B.; Atanassov, P. Computational and experimental evidence for a new TM-N3/C moiety family in non-PGM electrocatalysts. Phys. Chem. Chem. Phys. 2015, 17 17785–17789.

    CAS  Google Scholar 

  31. Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138 3570–3578.

    CAS  Google Scholar 

  32. Ratso, S.; Sahraie, N. R.; Sougrati, M. T.; Käärik, M.; Kook, M.; Saar, R.; Paiste, P.; Jia, Q. Y.; Leis, J.; Mukerjee, S. et al. Synthesis of highly-active Fe-N-C catalysts for PEMFC with carbide-derived carbons. J. Mater. Chem. A 2018, 6 14663–14674.

    CAS  Google Scholar 

  33. Liu, Z. J.; Yu, J.; Li, X. Y.; Zhang, L. X.; Luo, D.; Liu, X. H.; Liu, X. W.; Liu, S. B.; Feng, H. B.; Wu, G. L. et al. Facile synthesis of N-doped carbon layer encapsulated Fe2N as an efficient catalyst for oxygen reduction reaction. Carbon 2018, 127 636–642.

    CAS  Google Scholar 

  34. Huang, X. X.; Yang, Z. Y.; Dong, B.; Wang, Y. Z.; Tang, T. Y.; Hou, Y. L. In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale 2017, 9 8102–8106.

    CAS  Google Scholar 

  35. Zhu, A. Q.; Qiao, L. L.; Tan, P. F.; Ma, Y. J.; Zeng, W. X.; Dong, R.; Ma, C.; Pan, J. Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: Surface engineering and experimental probe into active sites. Appl. Catal. B: Environ. 2019, 254 601–611.

    CAS  Google Scholar 

  36. Yu, Y.; Xiao, D. J.; Ma, J.; Chen, C. L.; Li, K.; Ma, J.; Liao, Y.; Zheng, L. R.; Zuo, X. The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe-N coordination for the oxygen reduction reaction. RSC Adv. 2018, 8 24509–24516.

    CAS  Google Scholar 

  37. Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57 8525–8529.

    CAS  Google Scholar 

  38. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-2977-4.

  39. Xu, P.; Zhang, J.; Jiang, G. P.; Hassan, F.; Choi, J. Y.; Fu, X. G.; Zamani, P.; Yang, L. J.; Banham, D.; Ye, S. Y. et al. Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy 2018, 51 745–753.

    CAS  Google Scholar 

  40. Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54 8179–8183.

    CAS  Google Scholar 

  41. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140 11594–11598.

    CAS  Google Scholar 

  42. Li, J. S.; Chen, J. J.; Wan, H.; Xiao, J.; Tang, Y. G.; Liu, M.; Wang, H. Y. Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Appl. Catal. B: Environ. 2019, 242 209–217.

    CAS  Google Scholar 

  43. Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139 10790–10798.

    CAS  Google Scholar 

  44. Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30 1800588.

    Google Scholar 

  45. Yi, J. D.; Xu, R.; Wu, Q.; Zhang, T.; Zang, K. T.; Luo, J.; Liang, Y. L.; Huang, Y. B.; Cao, R. Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 2018, 3 883–889.

    CAS  Google Scholar 

  46. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56 6937–6941.

    CAS  Google Scholar 

  47. An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 2018, 12 9441–9450.

    CAS  Google Scholar 

  48. Xiong, Y.; Sun, W. M.; Xin, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202000896.

  49. Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefèvre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S. et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 2012, 14 11673–11688.

    CAS  Google Scholar 

  50. Jia, Q. Y.; Ramaswamy, N.; Tylus, U.; Strickland, K.; Li, J. K.; Serov, A.; Artyushkova, K.; Atanassov, P.; Anibal, J.; Gumeci, C. et al. Spectroscopic insights into the nature of active sites in iron-nitrogen-carbon electrocatalysts for oxygen reduction in acid. Nano Energy 2016, 29 65–82.

    CAS  Google Scholar 

  51. Li, X. N.; Zhu, K. Y.; Pang, J. F.; Tian, M.; Liu, J. Y.; Rykov, A. I.; Zheng, M. Y.; Wang, X. D.; Zhu, X. F.; Huang, Y. Q. et al. Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Appl. Catal. B: Environ. 2018, 224 518–532.

    CAS  Google Scholar 

  52. Varnell, J. A.; Tse, E. C. M.; Schulz, C. E.; Fister, T. T.; Haasch, R. T.; Timoshenko, J.; Frenkel, A. I.; Gewirth, A. A. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat. Commun. 2016, 7 12582.

    CAS  Google Scholar 

  53. Park, J. C.; Yeo, S. C.; Chun, D. H.; Lim, J. T.; Yang, J. I.; Lee, H. T.; Hong, S.; Lee, H. M.; Kim, C. S.; Jung, H. Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer-Tropsch synthesis. J. Mater. Chem. A 2014, 2 14371–14379.

    CAS  Google Scholar 

  54. Ferrandon, M.; Kropf, A. J.; Myers, D. J.; Artyushkova, K.; Kramm, U.; Bogdanoff, P.; Wu, G.; Johnston, C. M.; Zelenay, P. Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction Catalyst. J. Phys. Chem. C 2012, 116 16001–16013.

    CAS  Google Scholar 

  55. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14 937–942.

    CAS  Google Scholar 

  56. Kramm, U. I.; Lefèvre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J. P. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem. Soc. 2014, 136 978–985.

    CAS  Google Scholar 

  57. Zang, C.; Liu, Y. G.; Xu, Z. J.; Tse, C. W.; Guan, X. G.; Wei, J. H.; Huang, J. S.; Che, C. M. Highly enantioselective iron-catalyzed cis-dihydroxylation of alkenes with hydrogen peroxide oxidant via an FeIII-OOH reactive intermediate. Angew. Chem., Int. Ed. 2016, 55 10253–10257.

    CAS  Google Scholar 

  58. Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P. On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 2016, 138 635–640.

    CAS  Google Scholar 

  59. Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31 1806312.

    Google Scholar 

  60. Mechler, A. K.; Sahraie, N. R.; Armel, V.; Zitolo, A.; Sougrati, M. T.; Schwämmlein, J. N.; Jones, D. J.; Jaouen, F. Stabilization of iron-based fuel cell catalysts by non-catalytic platinum. J. Electrochem. Soc. 2018, 165 F1084.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (No. 2017YFA0700103), the National Natural Science Foundation of China (Nos. 21932002, 21872014, 21707015, 21902018, and 21577013), the Postdoctoral Science Foundation of China (Nos. 2019T120210, 2018M641687) and the Natural Science Foundation of Liaoning Province (No. 2019-MS-053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Ma or Chuan Shi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Chen, B., Zhang, X. et al. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 14, 122–130 (2021). https://doi.org/10.1007/s12274-020-3054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3054-8

Keywords

Navigation