Skip to main content
Log in

Using graphene to suppress the selenization of Pt for controllable fabrication of monolayer PtSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Platinum diselenide (PtSe2) is a promising transition metal dichalcogenide (TMDC) material with unique properties. It is necessary to find a controllable fabrication method to bridge PtSe2 with other two-dimensional (2D) materials for practical applications, which has rarely been reported so far. Here, we report that the selenization of Pt(111) can be suppressed to form a Se intercalated layer, instead of a PtSe2 monolayer, by inducing confined conditions with a precoating of graphene. Experiments with graphene-island samples demonstrate that the monolayer PtSe2 can be controllably fabricated only on the bare Pt surface, while the Se intercalated layer is formed underneath graphene, as verified by atomic-resolution observations with scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM). In addition, the orientation of the graphene island shows a negligible influence on the Se intercalated layer induced by the graphene coating. By extending the application of 2D confined reactions, this work provides a new method to control the fabrication and pattern 2D materials during the fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater.2017, 2, 17033.

    CAS  Google Scholar 

  2. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res.2019, 12, 2695–2711.

    CAS  Google Scholar 

  3. Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater.2017, 16, 182–194.

    CAS  Google Scholar 

  4. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.2014, 10, 343–350.

    CAS  Google Scholar 

  5. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    CAS  Google Scholar 

  6. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol.2014, 9, 768–779.

    CAS  Google Scholar 

  7. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano2014, 8, 1102–1120.

    CAS  Google Scholar 

  8. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater.2016, 1, 16052.

    CAS  Google Scholar 

  9. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res.2016, 9, 1543–1560.

    CAS  Google Scholar 

  10. Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron- mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater.2017, 29, 1604230.

    Google Scholar 

  11. Zhou, J. D.; Kong, X. H.; Sekhar, M. C.; Lin, J. H.; Le Goualher, F.; Xu, R.; Wang, X. W.; Chen, Y.; Zhou, Y.; Zhu, C. et al. Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano2019, 13, 10929–10938.

    CAS  Google Scholar 

  12. Yim, C.; Lee, K.; McEvoy, N.; O’Brien, M.; Riazimehr, S.; Berner, N. C.; Cullen, C. P.; Kotakoski, J.; Meyer, J. C.; Lemme, M. C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano2016, 10, 9550–9558.

    CAS  Google Scholar 

  13. Yao, W.; Wang, E. Y.; Huang, H. Q.; Deng, K.; Yan, M. Z.; Zhang, K. N.; Miyamoto, K.; Okuda, T.; Li, L. F.; Wang, Y. L. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun.2017, 8, 14216.

    CAS  Google Scholar 

  14. Chia, X. Y.; Adriano, A.; Lazar, P.; Sofer, Z.; Luxa, J.; Pumera, M. Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electro-catalysis: Monotonic dependence on the chalcogen size. Adv. Funct. Mater.2016, 26, 4306–4318.

    CAS  Google Scholar 

  15. Sajjad, M.; Montes, E.; Singh, N.; Schwingenschlögl, U. Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Interfaces2017, 4, 1600911.

    Google Scholar 

  16. Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett.2015, 15, 4013–4018.

    CAS  Google Scholar 

  17. Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F. et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater.2017, 16, 717–721.

    CAS  Google Scholar 

  18. Boland, C. S.; Coileáin, C. Ó.; Wagner, S.; McManus, J. B.; Cullen, C. P.; Lemme, M. C.; Duesberg, G. S.; McEvoy, N. PtSe2 grown directly on polymer foil for use as a robust piezoresistive sensor. 2D Mater.2019, 6, 045029.

    CAS  Google Scholar 

  19. Yim, C.; Passi, V.; Lemme, M. C.; Duesberg, G. S.; Coileáin, C. Ó.; Pallecchi, E.; Fadil, D.; McEvoy, N. Electrical devices from top-down structured platinum diselenide films. npj 2D Mater. Appl.2018, 2, 5.

    Google Scholar 

  20. Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res.2019, 12, 183–189.

    CAS  Google Scholar 

  21. Sattar, S.; Schwingenschlögl, U. Electronic properties of graphene-PtSe2 contacts. ACS Appl. Mater. Interfaces2017, 9, 15809–15813.

    CAS  Google Scholar 

  22. Wang, W. J.; Li, K. L.; Wang, Y.; Jiang, W. X.; Liu, X. Y.; Qi, H. Investigation of the band alignment at MoS2/PtSe2 heterojunctions. Appl. Phys. Lett.2019, 114, 201601.

    Google Scholar 

  23. Zeng, L. H.; Lin, S. H.; Lou, Z. H.; Yuan, H. Y.; Long, H.; Li, Y. Y.; Lu, W.; Lau, S. P.; Wu, D.; Tsang, Y. H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater.2018, 10, 352–362.

    CAS  Google Scholar 

  24. Guo, C. X.; Xiao, J. P. Towards unifying the concepts of catalysis in confined space. Comput. Mater. Sci.2019, 161, 58–63.

    CAS  Google Scholar 

  25. Shifa, T. A.; Vomiero, A. Confined catalysis: Progress and prospects in energy conversion. Adv. Energ. Mater.2019, 9, 1902307.

    CAS  Google Scholar 

  26. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol.2016, 11, 218–230.

    CAS  Google Scholar 

  27. Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA2017, 114, 5930–5934.

    CAS  Google Scholar 

  28. Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett.2012, 100, 093101.

    Google Scholar 

  29. Cui, Y.; Gao, J. F.; Jin, L.; Zhao, J. J.; Tan, D. L.; Fu, Q.; Bao, X. H. An exchange intercalation mechanism for the formation of a two-dimensional si structure underneath graphene. Nano Res.2012, 5, 352–360.

    CAS  Google Scholar 

  30. Yazdani, S.; Yarali, M.; Cha, J. J. Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides. Nano Res.2019, 12, 2126–2139.

    CAS  Google Scholar 

  31. Cao, L. L.; Yu, Y. X.; Zhou, X.; Lei, S. B. Surface confined synthesis of hydroxy functionalized two-dimensional polymer: The effect of the position of hydroxy groups. ChemPhysChem2019, 20, 2322–2326.

    CAS  Google Scholar 

  32. Chen, X.; Lin, Z. Z. Single-layer graphdiyne-covered Pt(111) surface: Improved catalysis confined under two-dimensional overlayer. J. Nanopart. Res.2018, 20, 136.

    Google Scholar 

  33. Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev.2017, 46, 1842–1874.

    CAS  Google Scholar 

  34. Lin, Z. Z.; Chen, X.; Yin, C.; Yue, L.; Meng, F. X. Electrochemical CO2 reduction in confined space: Enhanced activity of metal catalysts by graphene overlayer. Int. J. Energy Res.2020, 44, 784–794.

    CAS  Google Scholar 

  35. Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core-shell nanoreactors. Nano Res.2017, 10, 1403–1412.

    CAS  Google Scholar 

  36. Lu, S. J.; Wang, W. J.; Yang, S. S.; Chen, W.; Zhuang, Z. B.; Tang, W. J.; He, C. H.; Qian, J. J.; Ma, D. K.; Yang, Y. et al. Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction. Nano Res.2019, 12, 3116–3122.

    CAS  Google Scholar 

  37. Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res.2018, 11, 2909–2931.

    CAS  Google Scholar 

  38. Al Balushi, Z. Y.; Wang, K.; Ghosh, R. K.; Vilá, R. A.; Eichfeld, S. M.; Caldwell, J. D.; Qin, X. Y.; Lin, Y. C.; DeSario, P. A.; Stone, G. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater.2016, 15, 1166–1171.

    CAS  Google Scholar 

  39. Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res.2019, 12, 149–157.

    CAS  Google Scholar 

  40. Li, G.; Zhang, L. Z.; Xu, W. Y.; Pan, J. B.; Song, S. R.; Zhang, Y.; Zhou, H. T.; Wang, Y. L.; Bao, L. H.; Zhang, Y. Y. et al. Stable silicene in graphene/silicene Van der Waals heterostructures. Adv. Mater.2018, 30, 1804650.

    Google Scholar 

  41. He, T.; Wang, Z.; Zhong, F.; Fang, H. L.; Wang, P.; Hu, W. D. Etching techniques in 2D materials. Adv. Mater. Technol.2019, 4, 1900064.

    CAS  Google Scholar 

  42. Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett.2011, 98, 033101.

    Google Scholar 

  43. Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B2009, 80, 245411.

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Nos. 61725107 and 61971035), Beijing Natural Science Foundation (Nos. 4192054 and Z190006), Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB30000000 and XDB28000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye-Liang Wang or Hong-Jun Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZL., Zhu, ZL., Wu, X. et al. Using graphene to suppress the selenization of Pt for controllable fabrication of monolayer PtSe2. Nano Res. 13, 3212–3216 (2020). https://doi.org/10.1007/s12274-020-2989-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2989-0

Keywords

Navigation