Skip to main content
Log in

Fast growth of large single-crystalline WS2 monolayers via chemical vapor deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) tungsten disulfide (WS2) has emerged as a promising ultrathin semiconductor for building high-performance nanoelectronic devices. The controllable synthesis of WS2 monolayers (1L) with both large size and high quality remains as a challenge. Here, we developed a new approach for the chemical vapor deposition (CVD) growth of WS2 monolayers by using K2WS4 as the growth precursor. The simple chemistry involved in our approach allowed for improved controllability and a fast growth rate of ~ 30 μm·min−1. We achieved the reliable growth of 1L WS2 flakes with side lengths of up to ~ 500 μm and the obtained WS2 flakes were 2D single crystals with low density of defects over a large area as evidenced by various spectroscopic and microscopic characterizations. In addition, the large 1L WS2 single crystals we obtained showed higher electrical performance than their counterparts grown with previous approaches, demonstrating the potential of our approach in producing high quality and large 2D semiconductors for future nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ye, Z. L.; Cao, T.; O’Brien, K.; Zhu, H. Y.; Yin, X. B.; Wang, Y.; Louie, S. G.; Zhang, X. Probing excitonic dark states in single-layer tungsten disulphide. Nature2014, 513, 214–218.

    Article  CAS  Google Scholar 

  2. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics2016, 10, 216–226.

    Article  CAS  Google Scholar 

  3. Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

    Article  CAS  Google Scholar 

  4. Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230–5234.

    Article  CAS  Google Scholar 

  5. Zhang, F.; Lu, Y. F.; Schulman, D. S.; Zhang, T. Y.; Fujisawa, K.; Lin, Z.; Lei, Y.; Elias, A. L.; Das, S.; Sinnott, S. B. et al. Carbon doping of WS2 monolayers: Bandgap reduction and p-type doping transport. Sci. Adv. 2019, 5, eaav5003.

    Article  CAS  Google Scholar 

  6. Mehew, J. D.; Unal, S.; Alonso, E. T.; Jones, G. F.; Ramadhan, S. F.; Craciun, M. F.; Russo, S. Fast and highly sensitive ionic-polymergated WS2-graphene photodetectors. Adv. Mater. 2017, 29, 1700222.

    Article  Google Scholar 

  7. Yeh, C. H.; Chen, H. C.; Lin, H. C.; Lin, Y. C.; Liang, Z. Y.; Chou, M. Y.; Suenaga, K.; Chiu, P. W. Ultrafast monolayer In/Gr-WS2-Gr hybrid photodetectors with high gain. ACS Nano2019, 13, 3269–3279.

    Article  CAS  Google Scholar 

  8. Kim, B. H.; Gu, H. H.; Yoon, Y. J. Large-area and low-temperature synthesis of few-layered WS2 films for photodetectors. 2D Mater. 2018, 5, 045030.

    Article  CAS  Google Scholar 

  9. Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

    Article  CAS  Google Scholar 

  10. Zhang, Y. S.; Shi, J. P.; Han, G. F.; Li, M. J.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Li, C.; Lang, X. Y.; Zhang, Y. F. et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 2015, 8, 2881–2890.

    Article  CAS  Google Scholar 

  11. Zhang, Y.; Yao, Y. Y.; Sendeku, M. G.; Yin, L.; Zhan, X. Y.; Wang, F.; Wang, Z. X.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater.2019, 31, 1901694.

    Article  CAS  Google Scholar 

  12. Thangaraja, A.; Shinde, S. M.; Kalita, G.; Tanemura, M. Effect of WO3 precursor and sulfurization process on WS2 crystals growth by atmospheric pressure CVD. Mater. Lett. 2015, 156, 156–160.

    Article  CAS  Google Scholar 

  13. Cho, D. H.; Lee, W. J.; Wi, J. H.; Han, W. S.; Yun, S. J.; Shin, B.; Chung, Y. D. Enhanced sulfurization reaction of molybdenum using a thermal cracker for forming two-dimensional MoS2 layers. Phys. Chem. Chem. Phys. 2018, 20, 16193–16201.

    Article  CAS  Google Scholar 

  14. Kastl, C.; Koch, R. J.; Chen, C. T.; Eichhorn, J.; Ulstrup, S.; Bostwick, A.; Jozwiak, C.; Kuykendall, T. R.; Borys, N. J.; Toma, F. M. et al. Effects of defects on band structure and excitons in WS2 revealed by nanoscale photoemission spectroscopy. ACS Nano2019, 13, 1284–1291.

    CAS  Google Scholar 

  15. Lin, Y. C.; Li, S. S.; Komsa, H. P.; Chang, L. J.; Krasheninnikov, A. V.; Eda, G. K.; Suenaga, K. Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv. Funct. Mater. 2018, 28, 1704210.

    Article  Google Scholar 

  16. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

    Article  Google Scholar 

  17. Schuler, B.; Lee, J. H.; Kastl, C.; Cochrane, K. A.; Chen, C. T.; Refaely- Abramson, S.; Yuan, S. J.; van Veen, E.; Roldán, R.; Borys, N. J. et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 2019, 13, 10520–10534.

    Article  CAS  Google Scholar 

  18. Lan, C. Y.; Kang, X. L.; Wei, R. J.; Meng, Y.; Yip, S. P.; Zhang, H.; Ho, J. C. Utilizing a NaOH promoter to achieve large single-domain monolayer WS2 films via modified chemical vapor deposition. ACS Appl. Mater. Interfaces2019, 11, 35238–35246.

    Article  CAS  Google Scholar 

  19. Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

    Article  CAS  Google Scholar 

  20. Sarma, P. V.; Patil, P. D.; Barman, P. K.; Kini, R. N.; Shaijumon, M. M. Controllable growth of few-layer spiral WS2. RSC Adv. 2016, 6, 376–382.

    Article  CAS  Google Scholar 

  21. Chen, K.; Wan, X.; Xie, W. G.; Wen, J. X.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431–6437.

    Article  CAS  Google Scholar 

  22. Xu, W. S.; Kozawa, D. C.; Zhou, Y. Q.; Wang, Y. Z.; Sheng, Y. W.; Jiang, T.; Strano, M. S.; Warner, J. H. Controlling photoluminescence enhancement and energy transfer in WS2:hBN:WS2 vertical stacks by precise interlayer distances. Small2020, 16, 1905985.

    Article  CAS  Google Scholar 

  23. Park, J.; Kim, M. S.; Cha, E.; Kim, J.; Choi, W. Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci. Rep. 2017, 7, 16121.

    Article  Google Scholar 

  24. Hsu, W. T.; Quan, J. M.; Wang, C. Y.; Lu, L. S.; Campbell, M.; Chang, W. H.; Li, L. J.; Li, X. Q.; Shih, C. K. Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 2019, 6, 025028.

    Article  CAS  Google Scholar 

  25. Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics2015, 9, 466–469.

    Article  CAS  Google Scholar 

  26. Yue, Y. C.; Chen, J. C.; Zhang, Y.; Ding, S. S.; Zhao, F. L.; Wang, Y.; Zhang, D. H.; Li, R. J.; Dong, H. L.; Hu, W. P. et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces2018, 10, 22435–22444.

    Article  CAS  Google Scholar 

  27. Gong, Y. J.; Lin, Z.; Ye, G. L.; Shi, G.; Feng, S. M.; Lei, Y.; Elias, A. L.; Perea- Lopez, N.; Vajtai, R.; Terrones, H. et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano2015, 9, 11658–11666.

    Article  CAS  Google Scholar 

  28. Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

    Article  CAS  Google Scholar 

  29. Chen, J.; Jung, G. S.; Ryu, G. H.; Chang, R. J.; Zhou, S.; Wen, Y.; Buehler, M. J.; Warner, J. H. Atomically sharp dual grain boundaries in 2D WS2 bilayers. Small2019, 15, 1902590.

    Article  CAS  Google Scholar 

  30. Liu, C.; Xu, X. Z.; Qiu, L.; Wu, M. H.; Qiao, R. X.; Wang, L.; Wang, J. H.; Niu, J. J.; Liang, J.; Zhou, X. et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem. 2019, 11, 730–736.

    Article  CAS  Google Scholar 

  31. Sheng, Y. W.; Tan, H. J.; Wang, X. C.; Warner, J. H. Hydrogen addition for centimeter-sized monolayer tungsten disulfide continuous films by ambient pressure chemical vapor deposition. Chem. Mater. 2017, 29, 4904–4911.

    Article  CAS  Google Scholar 

  32. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature2019, 568, 70–74.

    Article  CAS  Google Scholar 

  33. Khalil, H. M. W.; Khan, M. F.; Eom, J.; Noh, H. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces2015, 7, 23589–23596.

    Article  CAS  Google Scholar 

  34. Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Kamran, M. A.; Majid, A.; Alharbi, T.; Eom, J. Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Adv. 2016, 6, 24675–24682.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Natural Science Foundation of China (Nos. 21875127 and 21925504) and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Jiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Liu, L., Cui, S. et al. Fast growth of large single-crystalline WS2 monolayers via chemical vapor deposition. Nano Res. 14, 1659–1662 (2021). https://doi.org/10.1007/s12274-020-2859-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2859-9

Keywords

Navigation