Skip to main content
Log in

Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient and stable oxygen evolution reaction (OER) electrocatalysts via doping strategy has well-documented for electrochemical water splitting. Herein, a homogeneous structure (denoted as Co/Ce-Ni3S2/NF) composed of Co and Ce dual doped Ni3S2 nanosheets on nickel foam was synthesized by a facile one-step hydrothermal method. Co and Ce dopants are distributed inside the host sulfide, thereby raising the active sites and the electrical conductivity. Besides, the CeOx nanoparticles generated by part of the Ce dopants as a cocatalyst further improve the catalytic activity by adding defective sites and enhancing the electron transfer. As a consequence, the obtained Co/Ce-Ni3S2/NF electrode exhibits better electrocatalytic activity than single Co or Ce doped Ni3S2 and pure Ni3S2, with low overpotential (286 mV) at 20 mA-cm−2, a small Tafel slope and excellent long-term durability in strong alkaline solution. These results presented here not only offer a novel platform for designing transition metal and lanthanide dual-doped catalysts, but also supply some guidelines for constructing catalysts in other catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, Y.; Sun, S. N.; Wei, C.; Sun, Y. M.; Xi, P. X.; Feng, Z. X.; Xu, Z. J. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv. Mater.2019, 31, 1902509.

    CAS  Google Scholar 

  2. Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y.; Li, Y. D. Porous molybdenum phosphide nanooctahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed.2016, 55, 12854–12858.

    CAS  Google Scholar 

  3. Wang, X.; Yu, L.; Guan, B. Y.; Song, S. Y.; Lou, X. W. D. Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution. Adv. Mater.2018, 30, 1801211.

    Google Scholar 

  4. Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem2017, 2, 791–802.

    CAS  Google Scholar 

  5. Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater.2020, 32, 1806326.

    CAS  Google Scholar 

  6. Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun.2018, 9, 2373.

    Google Scholar 

  7. Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res.2019, 12, 2055–2066.

    Google Scholar 

  8. Song, H.; Yang, Y. N.; Geng, J.; Gu, Z. Y.; Zou, J.; Yu, C. Z. Electron tomography: A unique tool solving intricate hollow nanostructures. Adv. Mater.2019, 31, 1801564.

    Google Scholar 

  9. Yu, X. Y.; Lou, X. W. Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater.2018, 8, 1701592.

    Google Scholar 

  10. Zhang, D. W.; Li, J. W.; Luo, J. X.; Xu, P. M.; Wei, L. C.; Zhou, D.; Xu, W. M.; Yuan, D. S. Ni3S2 nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects. Nanotechnology2018, 29, 245402.

    Google Scholar 

  11. Li, J. W.; Xu, P. M.; Zhou, R. F.; Li, R. C.; Qiu, L. J.; Jiang, S. P.; Yuan, D. S. Co9S8-Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochim. Acta2019, 299, 152–162.

    CAS  Google Scholar 

  12. Zhong, X. W.; Tang, J.; Wang, J. W.; Shao, M. M.; Chai, J. W.; Wang, S. P.; Yang, M.; Yang, Y.; Wang, N.; Wang, S. J. et al. 3D heterostructured pure and N-doped Ni3S2/VS2 nanosheets for high efficient overall water splitting. Electrochim. Acta2018, 269, 55–61.

    CAS  Google Scholar 

  13. Qi, J. Q.; Chang, Y.; Sui, Y. W.; He, Y. Z.; Meng, Q. K.; Wei, F. X.; Zhao, Y. L.; Jin, Y. X. Facile construction of 3D reduced graphene oxide wrapped Ni3S2 nanoparticles on Ni foam for high-performance asymmetric supercapacitor electrodes. Part. Part. Syst. Charact.2017, 34, 1700196.

    Google Scholar 

  14. Zhu, W. X.; Zhang, R.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Design and application of foams for electrocatalysis. ChemCatChem2017, 9, 1721–1743.

    CAS  Google Scholar 

  15. Shit, S.; Chhetri, S.; Jang, W.; Murmu, N. C.; Koo, H.; Samanta, P.; Kuila, T. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: An efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces2018, 10, 27712–27722.

    CAS  Google Scholar 

  16. Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci.2018, 5, 1700464.

    Google Scholar 

  17. Xiong, X. L.; You, C.; Liu, Z. A.; Asiri, A. M.; Sun, X. P. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustainable Chem.2018, 6, 2883–2887.

    CAS  Google Scholar 

  18. Wang, F. F.; Zhu, Y. F.; Tian, W.; Lv, X. B.; Zhang, H. L.; Hu, Z. F.; Zhang, Y. X.; Ji, J. Y.; Jiang, W. Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. J. Mater. Chem. A2018, 6, 10490–10496.

    CAS  Google Scholar 

  19. Cheng, N. Y.; Liu, Q.; Asiri, A. M.; Xing, W.; Sun, X. P. A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A2015, 3, 23207–23212.

    CAS  Google Scholar 

  20. Du, H. T.; Kong, R. M.; Qu, F. L.; Lu, L. M. Enhanced electrocatalysis for alkaline hydrogen evolution by Mn doping in a Ni3S2 nanosheet array. Chem. Commun.2018, 54, 10100–10103.

    CAS  Google Scholar 

  21. Liu, Q.; Xie, L. S.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A Zndoped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem. Commun.2017, 53, 12446–12449.

    CAS  Google Scholar 

  22. Zhang, Z. M.; Gao, D. Q.; Xue, D. S.; Liu, Y. G.; Liu, P. T.; Zhang, J. Y.; Qian, J. M. Co and CeO2 co-decorated N-doping carbon nanofibers for rechargeable Zn-air batteries. Nanotechnology2019, 30, 395401.

    CAS  Google Scholar 

  23. Peng, R. S.; Li, S. J.; Sun, X. B.; Ren, Q. M.; Chen, L. M.; Fu, M. L.; Wu, J. L.; Ye, D. Q. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B: Environ.2018, 220, 462–470.

    CAS  Google Scholar 

  24. Xu, H. J.; Cao, J.; Shan, C. F.; Wang, B. K.; Xi, P. X.; Liu, W. S.; Tang, Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem., Int. Ed.2018, 57, 8654–8658.

    CAS  Google Scholar 

  25. Wang, Z. M.; Yu, R. B. Hollow micro/nanostructured ceria-based materials: Synthetic strategies and versatile applications. Adv. Mater.2019, 31, 1800592.

    Google Scholar 

  26. Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc.2015, 137, 14023–14026.

    CAS  Google Scholar 

  27. Xu, H. J.; Yang, Y. W.; Yang, X. X.; Cao, J.; Liu, W. S.; Tang, Y. Stringing MOF-derived nanocages: A strategy for the enhanced oxygen evolution reaction. J. Mater. Chem. A2019, 7, 8284–8291.

    CAS  Google Scholar 

  28. Guo, J. X.; Zhang, K.; Sun, Y. F.; Liu, Q. Y.; Tang, L.; Zhang, X. Efficient bifunctional vanadium-doped Ni3S2 nanorod array for overall water splitting. Inorg. Chem. Front.2019, 6, 443–450.

    CAS  Google Scholar 

  29. Gao, W.; Xia, Z. M.; Cao, F. X.; Ho, J. C.; Jiang, Z.; Qu, Y. Q. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded. Adv. Funct. Mater.2018, 28, 1706056.

    Google Scholar 

  30. Qiu, B. C.; Wang, C.; Zhang, N.; Cai, L. J.; Xiong, Y. J.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal.2019, 9, 6484–6490.

    CAS  Google Scholar 

  31. Yu, J. H.; Cheng, G. Z.; Luo, W. 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res.2018, 11, 2149–2158.

    CAS  Google Scholar 

  32. Wu, X. X.; Yang, Y. W.; Zhang, T.; Wang, B. K.; Xu, H. J.; Yan, X. B.; Tang, Y. CeOx-decorated hierarchical NiCo2S4 hollow nanotubes arrays for enhanced oxygen evolution reaction electrocatalysis. ACS Appl. Mater. Interfaces2019, 11, 39841–39847.

    CAS  Google Scholar 

  33. Zhu, Y.; Yang, H. D.; Lan, K.; Iqbal, K.; Liu, Y.; Ma, P.; Zhao, Z. M.; Luo, S.; Luo, Y. T.; Ma, J. T. Optimization of iron-doped Ni3S2 nanosheets by disorder engineering for oxygen evolution reaction. Nanoscale2019, 11, 2355–2365.

    CAS  Google Scholar 

  34. Zhang, R.; Ren, X.; Hao, S.; Ge, R. X.; Liu, Z. A.; Asiri, A. M.; Chen, L.; Zhang, Q. J.; Sun, X. P. Selective phosphidation: An effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A2018, 6, 1985–1990.

    CAS  Google Scholar 

  35. Liu, T.; Li, P.; Yao, N.; Kong, T. G.; Cheng, G. Z.; Chen, S. L.; Luo, W. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv. Mater.2019, 31, 1806672.

    Google Scholar 

  36. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni Foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater.2016, 26, 4661–4672.

    CAS  Google Scholar 

  37. Meng, R. Q.; Feng, X. X.; Yang, Y. W.; Lv, X. D.; Cao, J.; Tang, Y. Cerium-oxide-modified anodes for efficient and UV-stable ZnO-based perovskite solar cells. ACS Appl. Mater. Interfaces2019, 11, 13273–13278.

    CAS  Google Scholar 

  38. He, X. B.; Yi, X. R.; Yin, F. X.; Chen, B. H.; Li, G. R.; Yin, H. Q. Less active CeO2 regulating bifunctional oxygen electrocatalytic activity of Co3O4@N-doped carbon for Zn-air batteries. J. Mater. Chem. A2019, 7, 6753–6765.

    CAS  Google Scholar 

  39. Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater.2016, 28, 4698–4703.

    CAS  Google Scholar 

  40. Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater.2017, 29, 1704681.

    Google Scholar 

  41. Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater.2019, 31, 1900062.

    Google Scholar 

  42. Li, Y. F; Wang, S.; Chang, W.; Zhang, L. H.; Wu, Z. S.; Song, S. Y.; Xing, Y. Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C3N4 nanosheets with extended visible-light response. J. Mater. Chem. A2019, 7, 20640–20648.

    CAS  Google Scholar 

  43. Obata, K.; Takanabe, K. A permselective CeOx, coating to improve the stability of oxygen evolution electrocatalysts. Angew. Chem., Int. Ed.2018, 57, 1616–1620.

    CAS  Google Scholar 

  44. Yuan, C. Z.; Sun, Z. T.; Jiang, Y. F.; Yang, Z. K.; Jiang, N.; Zhao, Z. W.; Qazi, U. Y.; Zhang, W. H.; Xu, A. W. One-step in situ growth of iron-nickel sulfide nanosheets on FeNi alloy foils: High-performance and self-supported electrodes for water oxidation. Small2017, 13, 1604161.

    Google Scholar 

  45. Zhao, Y. X.; Chang, C.; Teng, F.; Zhao, Y. F.; Chen, G. B.; Shi, R.; Waterhouse, G. I. N.; Huang, W. F.; Zhang, T. R. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater.2017, 7, 1700005.

    Google Scholar 

  46. Ling, T.; Zhang, T.; Ge, B. H.; Han, L. L.; Zheng, L. R.; Lin, F.; Xu, Z. R.; Hu, W. B.; Du, X. W.; Davey, K. et al. Well-dispersed nickeland zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater.2019, 31, 1807771.

    Google Scholar 

  47. Sivanantham, A.; Shanmugam, S. Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal. B: Environ.2017, 203, 485–493.

    CAS  Google Scholar 

  48. Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res.2020, 13, 79–85.

    CAS  Google Scholar 

  49. Yang, Y. Q.; Zhang, K.; Ling, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 Heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal.2017, 7, 2357–2366.

    CAS  Google Scholar 

  50. Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCoxOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res.2020, 13, 246–254.

    CAS  Google Scholar 

  51. Yang, C.; Gao, M. Y.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Abbott, A. P. In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy2017, 36, 85–94.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21871121 and 21431002) and Fundamental Research Funds for the Central Universities (No. Lzujbky-2018-ot01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingbin Yan or Yu Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, T., Wei, J. et al. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 13, 2130–2135 (2020). https://doi.org/10.1007/s12274-020-2819-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2819-4

Keywords

Navigation