Skip to main content
Log in

Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Palladium diselenide (PdSe2), a stable layered material with pentagonal structure, has attracted extensive interest due to its excellent electrical and optoelectronic performance. Here, we report a reliable process to synthesize PdSe2 via chemical vapor deposition (CVD) method. Through systematic regulation of temperature in the growth process, we can tune the thickness, size, nucleation density and morphology of PdSe2 nanosheets. Field-effect transistors based on PdSe2 nanosheets exhibit n-type behavior and present a high electron mobility of 105 cm2·V−1·s−1. The electrical property of the devices after 6 months keeping in the air show little change, implying outstanding air-stability of PdSe2. In addition, PdSe2 near-infrared photodetector shows a photoresponsivity of 660 A·W−1 under 914 nm laser. These performances are better than those of most CVD-grown 2D materials, making ultrathin PdSe2 a highly qualified candidate material for next-generation optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y.; Deng, H. X.; Xu, K.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Wang, F.; Zhan, X. Y.; Li, S. S.; Luo, J. W. et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale2015, 7, 14093–14099.

    CAS  Google Scholar 

  2. Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater.2015, 27, 8035–8041.

    CAS  Google Scholar 

  3. Zhou, S. S.; Wang, R. Y.; Han, J. B.; Wang, D. L.; Li, H. Q.; Gan, L.; Zhai, T. Y. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and Raman scattering investigation. Adv. Funct. Mater.2019, 29, 1805880.

    Google Scholar 

  4. Cui, Y.; Zhou, Z.; Li, T.; Wang, K.; Li, J.; Wei, Z. Versatile crystal structures and (opto)electronic applications of the 2D metal mono-, di-, and tri-chalcogenide nanosheets. Adv. Funct. Mater.2019, 29, 1900040.

    Google Scholar 

  5. Zhang, Z. P.; Gong, Y.; Zou, X. L.; Liu, P. R.; Yang, P. F.; Shi, J. P.; Zhao, L. Y.; Zhang, Q.; Gu, L.; Zhang, Y. F. Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano2019, 13, 885–893.

    CAS  Google Scholar 

  6. Wang, H.; Huang, X. W.; Lin, J. H.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F. C.; Zeng, Q. S.; Zhou, J. D.; Yu, P. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun.2017, 8, 394.

    Google Scholar 

  7. Tang, L. P.; Tang, L. M.; Wang, D.; Deng, H. X.; Chen, K. Q. Metal and ligand effects on the stability and electronic properties of crystalline two-dimensional metal-benzenehexathiolate coordination compounds. J. Phys.: Condens. Matter2018, 30, 465301.

    Google Scholar 

  8. Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater.2015, 25, 4076–4082.

    CAS  Google Scholar 

  9. Sun, G. Z.; Li, B.; Li, J.; Zhang, Z. W.; Ma, H. F.; Chen, P.; Zhao, B.; Wu, R. X.; Dang, W. Q.; Yang, X. D. et al. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Res.2019, 12, 1139–1145.

    CAS  Google Scholar 

  10. Sun, G. Z.; Li, B.; Wang, S. F.; Zhang, Z. W.; Li, J.; Duan, X. D.; Duan, X. F. Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. Nano Res.2019, 12, 2781–2787.

    CAS  Google Scholar 

  11. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun.2014, 5, 4458.

    CAS  Google Scholar 

  12. Lee, S.; Yang, F.; Suh, J.; Yang, S. J.; Lee, Y.; Li, G.; Sung Choe, H.; Suslu, A.; Chen, Y. B.; Ko, C. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun.2015, 6, 8573.

    CAS  Google Scholar 

  13. Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater.2018, 30, 1800754.

    Google Scholar 

  14. Zhong, M.; Xia, Q.; Pan, L.; Liu, Y.; Chen, Y.; Deng, H. X.; Li, J.; Wei, Z. Field-effect transistors: Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic (Adv. Funct. Mater. 43/2018). Adv. Funct. Mater.2018, 28, 1870312.

    Google Scholar 

  15. Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Heine, T. Room temperature quantum spin hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells. NPG Asia Mater.2016, 8, e264.

    CAS  Google Scholar 

  16. Wang, F. Q.; Yu, J. B.; Wang, Q.; Kawazoe, Y.; Jena, P. Lattice thermal conductivity of penta-graphene. Carbon2016, 105, 424–429.

    CAS  Google Scholar 

  17. Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano2019, 13, 2511–2519.

    CAS  Google Scholar 

  18. Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc.2017, 139, 14090–14097.

    CAS  Google Scholar 

  19. Oyedele, A. D.; Yang, S. Z.; Feng, T. L.; Haglund, A. V.; Gu, Y. Y.; Puretzky, A. A.; Briggs, D.; Rouleau, C. M.; Chisholm, M. F.; Unocic, R. R. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc.2019, 141, 8928–8936.

    CAS  Google Scholar 

  20. Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett.2020, 20, 1172–1182.

    CAS  Google Scholar 

  21. Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater.2019, 31, 1807609.

    Google Scholar 

  22. Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater.2019, 29, 1900849.

    Google Scholar 

  23. Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/ PdSe2/germanium heterojunction. ACS Nano2019, 13, 9907–9917.

    CAS  Google Scholar 

  24. Hoffman, A. N.; Gu, Y. Y.; Tokash, J.; Woodward, J.; Xiao, K.; Rack, P. D. Layer-by-layer thinning of PdSe2 flakes via plasma induced oxidation and sublimation. ACS Appl. Mater. Interfaces2020, 12, 7345–7350.

    CAS  Google Scholar 

  25. Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater.2019, 29, 1806878.

    Google Scholar 

  26. Gu, Y. Y.; Cai, H.; Dong, J. C.; Yu, Y. L.; Hoffman, A. N.; Liu, C. Z.; Oyedele, A. D.; Lin, Y. C.; Ge, Z. Z.; Puretzky, A. A. et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.201906238.

    CAS  Google Scholar 

  27. Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater.2018, 30, 1801043.

    Google Scholar 

  28. Zhao, B.; Dang, W. W.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc.2018, 140, 14217–14223.

    CAS  Google Scholar 

  29. Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol.2016, 11, 930–935.

    CAS  Google Scholar 

  30. Shao, G. L.; Xue, X. X.; Zhou, X. L.; Xu, J.; Jin, Y. Y.; Qi, S. Y.; Liu, N.; Duan, H. G.; Wang, S. S.; Li, S. S. et al. Shape-engineered synthesis of atomically thin 1T-SnS2 catalyzed by potassium halides. ACS Nano2019, 13, 8265–8274.

    CAS  Google Scholar 

  31. Li, X. F.; Dong, J. C.; Idrobo, J. C.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.; Ding, F.; Xiao, K. Edge-controlled growth and etching of two-dimensional GaSe monolayers. J. Am. Chem. Soc.2017, 139, 482–491.

    CAS  Google Scholar 

  32. Li, X. F.; Basile, L.; Huang, B.; Ma, C.; Lee, J.; Vlassiouk, I. V.; Puretzky, A. A.; Lin, M. W.; Yoon, M.; Chi, M. F. et al. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS Nano2015, 9, 8078–8088.

    CAS  Google Scholar 

  33. Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/ perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci.2019, 6, 1901134.

    CAS  Google Scholar 

  34. Chow, W. L.; Yu, P.; Liu, F. C.; Hong, J. H.; Wang, X. L.; Zeng, Q. S.; Hsu, C. H.; Zhu, C.; Zhou, J. D.; Wang, X. W. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater.2017, 29, 1602969.

    Google Scholar 

  35. Puretzky, A. A.; Oyedele, A. D.; Xiao, K.; Haglund, A. V.; Sumpter, B. G.; Mandrus, D.; Geohegan, D. B.; Liang, L. B. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater.2018, 5, 035016.

    Google Scholar 

  36. Bagnall, A. G.; Liang, W. Y.; Marseglia, E. A.; Welber, B. Raman studies of MoS2 at high pressure. Phys. B+C1980, 99, 343–346.

    CAS  Google Scholar 

  37. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano2010, 4, 2695–2700.

    CAS  Google Scholar 

  38. Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T. Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl. Phys. Lett.2012, 101, 101906.

    Google Scholar 

  39. Burton, W. K.; Cabrera, N. Crystal growth and surface structure. Part I. Discuss. Faraday Soc.1949, 5, 33–39.

    Google Scholar 

  40. Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano2015, 9, 6119–6127.

    CAS  Google Scholar 

  41. Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett.2015, 15, 709–713.

    CAS  Google Scholar 

  42. Ma, H. F.; Chen, P.; Li, B.; Li, J.; Ai, R. Q.; Zhang, Z. W.; Sun, G. Z.; Yao, K. K.; Lin, Z. Y.; Zhao, B. et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett.2018, 18, 3523–3529.

    CAS  Google Scholar 

  43. Ma, H. F.; Dang, W. Q.; Yang, X. D.; Li, B.; Zhang, Z. W.; Chen, P.; Liu, Y.; Wan, Z.; Qian, Q.; Luo, J. et al. Chemical vapor deposition growth of single crystalline CoTe2 nanosheets with tunable thickness and electronic properties. Chem. Mater.2018, 30, 8891–8896.

    CAS  Google Scholar 

  44. Wu, R. X.; Tao, Q. Y.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z. W.; Ma, H. F.; Sun, G. Z. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater.2019, 29, 1806611.

    Google Scholar 

  45. Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater.2014, 26, 6371–6379.

    CAS  Google Scholar 

  46. Xie, S.; Xu, M. S.; Liang, T.; Huang, G. W.; Wang, S. P.; Xue, G. B.; Meng, N.; Xu, Y.; Chen, H. Z.; Ma, X. Y. et al. A high-quality round-shaped monolayer MoS2 domain and its transformation. Nanoscale2016, 8, 219–225.

    CAS  Google Scholar 

  47. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater.2013, 12, 554–561.

    CAS  Google Scholar 

  48. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater.2013, 12, 754–759.

    CAS  Google Scholar 

  49. Chen, L.; Liu, B. L.; Ge, M. Y.; Ma, Y. Q.; Abbas, A. N.; Zhou, C. W. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano2015, 9, 8368–8375.

    CAS  Google Scholar 

  50. Zheng, Z.; Hu, Q. S.; Zhou, H. Z.; Luo, P.; Nie, A. M.; Zhu, H. M.; Gan, L.; Zhuge, F. W.; Ma, Y.; Song, H. S. et al. Submillimeter and lead-free Cs3Sb2Br9 perovskite nanoflakes: Inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz.2019, 4, 1372–1379.

    CAS  Google Scholar 

  51. Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater.2016, 28, 10725–10731.

    CAS  Google Scholar 

  52. Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 µm. ACS Nano2019, 13, 9028–9037.

    CAS  Google Scholar 

  53. Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun.2019, 10, 3331.

    Google Scholar 

  54. Guo, N.; Gong, F.; Liu, J. K.; Jia, Y.; Zhao, S. F.; Liao, L.; Su, M.; Fan, Z. Y.; Chen, X. S.; Lu, W. et al. Hybrid WSe2-In2O3 phototransistor with ultrahigh detectivity by efficient suppression of dark currents. ACS Appl. Mater. Interfaces2017, 9, 34489–34496.

    CAS  Google Scholar 

  55. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev.2015, 44, 3691–3718.

    CAS  Google Scholar 

  56. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci.2017, 4, 1700323.

    Google Scholar 

  57. Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater.2016, 28, 8296–8301.

    CAS  Google Scholar 

  58. Li, Q.; Wei, A. X.; Lu, J. T.; Tao, L. L.; Yang, Y. B.; Luo, D. X.; Liu, J.; Xiao, Y.; Zhao, Y.; Li, J. B. Synthesis of submillimeter-scale single crystal stannous sulfide nanoplates for visible and near-infrared photodetectors with ultrahigh responsivity. Adv. Electron. Mater.2018, 4, 1800154.

    Google Scholar 

  59. Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater.2018, 28, 1706437.

    Google Scholar 

  60. Wang, F. K.; Li, L. G.; Huang, W. J.; Li, L.; Jin, B.; Li, H. Q.; Zhai, T. Y. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv. Funct. Mater.2018, 28, 1802707.

    Google Scholar 

  61. Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano2018, 12, 7253–7263.

    CAS  Google Scholar 

  62. Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater.2018, 28, 1705970.

    Google Scholar 

  63. Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano2015, 9, 1886–1894.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from National Natural Science Foundation of China (Nos. 61804050, 51991340, 51991343, and 51872086), the Fundamental Research Funds of the Central Universities (Nos. 531107051078 and 531107051055), the Double First-Class Initiative of Hunan University (No. 531109100004), the Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010), and the Strategic Priority Research Program of Chinese Academy of Science, Grant (No. XDB30000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Li or Xidong Duan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Jiang, J., Ma, H. et al. Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Res. 13, 2091–2097 (2020). https://doi.org/10.1007/s12274-020-2815-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2815-8

Keywords

Navigation