Skip to main content
Log in

Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Catalysts play a critical role in improving the hydrogen storage kinetics in Mg/MgH2 system. Exploring highly efficient catalysts and catalyst design principles are hot topics but challenging. The catalytic activity of metallic elements on dehydrogenation kinetics generally follows a sequence of Ti>Nb>Ni>V>Co>Mo. Herein, we report a highly efficient alloy catalyst composed of low-active elements of Mo and Ni (i.e. MoNi alloy) for MgH2 particles. MoNi alloy nanoparticles show excellent catalytic effect, even outperforming most advanced Ti-based catalysts. The synergy between Mo and Ni elements can promote the break of Mg-H bonds and the dissociation of hydrogen molecules, thus significantly improves the kinetics of Mg/MgH2 system. The MoNi-catalyzed Mg/MgH2 system can absorb and release 6.7 wt.% hydrogen within 60 s and 10 min at 300 °C, respectively, and exhibits excellent cycling stability and low-temperature hydrogen storage performance. This study provides a strategy for designing efficient catalysts for hydrogen storage materials using the synergy of metal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, E. S.; Ruminski, A. M.; Aloni, S.; Liu, Y. S.; Guo, J. H.; Urban, J. J. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat. Commun.2016, 7, 10804.

    CAS  Google Scholar 

  2. Yu, X. B.; Tang, Z. W.; Sun, D. L.; Ouyang, L. Z.; Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci.2017, 88, 1–48.

    Google Scholar 

  3. Chen, L. Y.; Liu, X. F.; Zheng, L. R.; Li, Y. C.; Guo, X.; Wan, X.; Liu, Q. T.; Shang, J. X.; Shui, J. L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Appl. Catal. B: Environ.2019, 256, 117849.

    CAS  Google Scholar 

  4. Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal.2019, 2, 259–268.

    CAS  Google Scholar 

  5. Zang, L.; Sun, W. Y.; Liu, S.; Huang, Y. K.; Yuan, H. T.; Tao, Z. L.; Wang, Y. J. Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2. ACS Appl. Mater. Interfaces2018, 10, 19598–19604.

    CAS  Google Scholar 

  6. Zhou, C. Y.; Szpunar, J. A.; Cui, X. Y. Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces2016, 8, 15232–15241.

    CAS  Google Scholar 

  7. Lutz, M.; Bhouri, M.; Linder, M.; Bürger, I. Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation. Appl. Energy2019, 236, 1034–1048.

    CAS  Google Scholar 

  8. Samsatli, S.; Samsatli, N. J. The role of renewable hydrogen and inter-seasonal storage in decarbonising heat—Comprehensive optimisation of future renewable energy value chains. Appl. Energy2019, 233-234, 854–893.

    Google Scholar 

  9. Shao, H. Y.; He, L. Q.; Lin, H. J.; Li, H. W. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technol.2018, 6, 445–458.

    Google Scholar 

  10. Xia, G. L.; Chen, X. W.; Zhao, Y.; Li, X. G.; Guo, Z. P.; Jensen, C. M.; Gu, Q. F.; Yu, X. B. High-performance hydrogen storage nanoparticles inside hierarchical porous carbon nanofibers with stable cycling. ACS Appl. Mater. Interfaces2017, 9, 15502–15509.

    CAS  Google Scholar 

  11. Cheng, F. Y.; Tao, Z. L.; Liang, J.; Chen, J. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nano-structures. Chem. Commun.2012, 48, 7334–7343.

    CAS  Google Scholar 

  12. Liu, Y. F.; Zhang, X.; Wang, K.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO2@C-doped NaAlH4. J. Mater. Chem. A2016, 4, 1087–1095.

    CAS  Google Scholar 

  13. Wang, T.; Jin, R. M.; Wu, X. Q.; Zheng, J.; Li, X. G.; Ostrikov, K. A highly efficient Ni-Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF. J. Mater. Chem. A2018, 6, 9228–9235.

    CAS  Google Scholar 

  14. Bai, Y.; Pei, Z. W.; Wu, F.; Wu, C. Role of metal electronegativity in the dehydrogenation thermodynamics and kinetics of composite metal borohydride-LiNH2 hydrogen storage materials. ACS Appl. Mater. Interfaces2018, 10, 9514–9521.

    CAS  Google Scholar 

  15. Cao, S.; Li, B.; Zhu, R. M.; Pang, H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J.2019, 355, 602–623.

    CAS  Google Scholar 

  16. Zhang, X. L.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Empowering hydrogen storage performance of MgH2 by nano-engineering and nanocatalysis. Mater. Today Nano2020, 9, 100064.

    Google Scholar 

  17. Verón, M. G.; Troiani, H.; Gennari, F. C. Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties. Carbon2011, 49, 2413–2423.

    Google Scholar 

  18. Barkhordarian, G.; Klassen, T.; Bormann, R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr. Mater.2003, 49, 213–217.

    CAS  Google Scholar 

  19. Jia, Y. H.; Han, S. M.; Zhang, W.; Zhao, X.; Sun, P. F.; Liu, Y. Q.; Shi, H.; Wang, J. S. Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2. Int. J. Hydrog. Energy2013, 38, 2352–2356.

    CAS  Google Scholar 

  20. Huang, W. C.; Yuan, J.; Zhang, J. G.; Liu, J. W.; Wang, H.; Ouyang, L. Z.; Zeng, M. Q.; Zhu, M. Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions. Rare Met.2017, 36, 574–580.

    CAS  Google Scholar 

  21. Ulmer, U.; Oertel, D.; Diemant, T.; Bonatto Minella, C.; Bergfeldt, T.; Dittmeyer, R.; Behm, R. J.; Fichtner, M. Performance improvement of V-Fe-Cr-Ti solid state hydrogen storage materials in impure hydrogen gas. ACS Appl. Mater. Interfaces2018, 10, 1662–1671.

    CAS  Google Scholar 

  22. Zhang, X.; Ren, Z. H.; Lu, Y. H.; Yao, J. H.; Gao, M. X.; Liu, Y. F.; Pan, H. G. Facile synthesis and superior catalytic activity of Nano-TiN@N-C for hydrogen storage in NaAlH4. ACS Appl. Mater. Interfaces2018, 10, 15767–15777.

    CAS  Google Scholar 

  23. Yang, B.; Zou, J. X.; Huang, T. P.; Mao, J. F.; Zeng, X. Q.; Ding, W. J. Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method. Chem. Eng. J.2019, 371, 233–243.

    CAS  Google Scholar 

  24. Zhang, X.; Liu, Y. F.; Wang, K.; Gao, M. X.; Pan, H. G. Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydro-genation/hydrogenation. Nano Res.2015, 8, 533–545.

    CAS  Google Scholar 

  25. Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. H.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res.2016, 9, 2284–2293.

    CAS  Google Scholar 

  26. Naqvi, S. R.; Hussain, T.; Luo, W.; Ahuja, R. Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials. Nano Res.2018, 11, 3802–3813.

    CAS  Google Scholar 

  27. Liu, Y. F.; Du, H. F.; Zhang, X.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Commun.2016, 52, 705–708.

    Google Scholar 

  28. Zhang, L. T.; Chen, L. X.; Fan, X. L.; Xiao, X. Z.; Zheng, J. G.; Huang, X. Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J. Mater. Chem. A2017, 5, 6178–6185.

    CAS  Google Scholar 

  29. Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd.1999, 292, 247–252.

    CAS  Google Scholar 

  30. Cui, J.; Liu, J. W.; Wang, H.; Ouyang, L. Z.; Sun, D. L.; Zhu, M.; Yao, X. D. Mg-TM (TM:Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A2014, 2, 9645–9655.

    CAS  Google Scholar 

  31. Xia, G. L.; Tan, Y. B.; Chen, X. W.; Sun, D. L.; Guo, Z. P.; Liu, H. K.; Ouyang, L. Z.; Zhu, M.; Yu, X. B. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater.2015, 27, 5981–5988.

    CAS  Google Scholar 

  32. Zhong, Y. J.; Dai, H. B.; Zhu, M.; Wang, P. Catalytic decomposition of hydrous hydrazine over Ni-Pt/La2O3 catalyst: A high-performance hydrogen storage system. Int. J. Hydrog. Energy2016, 41, 11042–11049.

    CAS  Google Scholar 

  33. Wu, Y. P.; Xu, F.; Sun, L. X.; Xia, Y. P.; Li, P.; Chen, J.; Yang, X.; Yu, F.; Zhang, H. Z.; Chu, H. L. et al. Improved dehydrogenation performance of Li-B-N-H by doped NiO. Metals2018, 8, 258.

    Google Scholar 

  34. Liu, Y. F.; Ren, Z. H.; Zhang, X.; Jian, N.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Development of catalyst-enhanced sodium alanate as an advanced hydrogen-storage material for mobile applications. Energy Technol.2018, 6, 487–500.

    CAS  Google Scholar 

  35. Wang, K.; Du, H. F.; Wang, Z. Y.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. Int. J. Hydrog. Energy2017, 42, 4244–4251.

    CAS  Google Scholar 

  36. Xie, X. B.; Chen, M.; Liu, P.; Shang, J. X.; Liu, T. Synergistic catalytic effects of the Ni and V nanoparticles on the hydrogen storage properties of Mg-Ni-V nanocomposite. Chem. Eng. J.2018, 347, 145–155.

    CAS  Google Scholar 

  37. Garcia, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano2014, 8, 11512–11521.

    CAS  Google Scholar 

  38. Prieto, G.; Beijer, S.; Smith, M. L.; He, M.; Au, Y.; Wang, Z.; Bruce, D. A.; de Jong, K. P.; Spivey, J. J.; de Jongh, P. E. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angew. Chem., Int. Ed.2014, 53, 6397–6401.

    CAS  Google Scholar 

  39. Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater.2018, 8, 1701345.

    Google Scholar 

  40. Liu, Y. Y.; Han, G. S.; Zhang, X. Y.; Xing, C. C.; Du, C. X.; Cao, H. Q.; Li, B. J. Co-Co3O4@carbon core-shells derived from metal-organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Res.2017, 10, 3035–3048.

    CAS  Google Scholar 

  41. Wang, X. X.; Wang, J. M.; Sun, X. P.; Wei, S.; Cui, L.; Yang, W. R.; Liu, J. Q. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res.2018, 11, 988–996.

    CAS  Google Scholar 

  42. Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater.2017, 29, 1703311.

    Google Scholar 

  43. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun.2017, 8, 15437.

    CAS  Google Scholar 

  44. Wang, Z. Y.; Ren, Z. H.; Jian, N.; Gao, M. X.; Hu, J. J.; Du, F.; Pan, H. G.; Liu, Y. F. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J. Mater. Chem. A2018, 6, 16177–16185.

    CAS  Google Scholar 

  45. Malouche, A.; Blanita, G.; Lupu, D.; Bourgon, J.; Nelayah, J.; Zlotea, C. Hydrogen absorption in 1 nm Pd clusters confined in MIL-101(Cr). J. Mater. Chem. A2017, 5, 23043–23052.

    CAS  Google Scholar 

  46. Shen, C. Q.; Aguey-Zinsou, K. F. Can γ-MgH2 improve the hydrogen storage properties of magnesium? J. Mater. Chem. A2017, 5, 8644–8652.

    CAS  Google Scholar 

  47. Liu, T.; Ma, X. J.; Chen, C. G.; Xu, L.; Li, X. G. Catalytic effect of Nb nanoparticles for improving the hydrogen storage properties of Mg-based nanocomposite. J. Phys. Chem. C2015, 119, 14029–14037.

    CAS  Google Scholar 

  48. Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3-x Nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater.2017, 29, 1703311.

    Google Scholar 

  49. Zhang, J. G.; Zhu, Y. F.; Zang, X. X.; Huan, Q. Q.; Su, W.; Zhu, D. L.; Li, L. Q. Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures. J. Mater. Chem. A2016, 4, 2560–2570.

    CAS  Google Scholar 

  50. Bandyopadhyay, P.; Saeed, G.; Kim, N. H.; Lee, J. H. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J.2020, 384, 123357.

    CAS  Google Scholar 

  51. Ouyang, L. Z.; Yang, X. S.; Zhu, M.; Liu, J. W.; Dong, H. W.; Sun, D. L.; Zou, J.; Yao, X. D. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites. J. Phys. Chem. C2014, 118, 7808–7820.

    CAS  Google Scholar 

  52. Hočevar, B.; Grilc, M.; Huš, M.; Likozar, B. Mechanism, ab initio calculations and microkinetics of straight-chain alcohol, ether, ester, aldehyde and carboxylic acid hydrodeoxygenation over Ni-Mo catalyst. Chem. Eng. J.2019, 359, 1339–1351.

    Google Scholar 

  53. Wang, C. H.; Qi, W. L.; Zhou, Y.; Kuang, W. D.; Azhagan, T.; Thomas, T.; Jiang, C. J.; Liu, S. Q.; Yang, M. H. Ni-Mo ternary nitrides based one-dimensional hierarchical structures for efficient hydrogen evolution. Chem. Eng. J.2020, 381, 122611.

    CAS  Google Scholar 

  54. Li, R. F.; Yu, R. H.; Liu, X. F.; Wan, J.; Wang, F. Study on the phase structures and electrochemical performances of La0.6Gd0.2Mg0.2 Ni3.15-xCo0.25Al0.1Mnx (x = 0–0.3) alloys as negative electrode material for nickel/metal hydride batteries. Electrochim Acta2015, 158, 89–95.

    CAS  Google Scholar 

  55. Li, R. F.; Xu, P. Z.; Zhao, Y. M.; Wan, J.; Liu, X. F.; Yu, R. H. The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2 Ni3.0Co0.5-xAlx (x = 0–0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries. J. Power Sources2014, 270, 21–27.

    CAS  Google Scholar 

  56. Ouyang, L. Z.; Yang, X. S.; Dong, H. W.; Zhu, M. Structure and hydrogen storage properties of Mg3Pr and Mg3PrNi0.1 alloys. Scr. Mater.2009, 61, 339–342.

    CAS  Google Scholar 

  57. Ouyang, L. Z.; Ye, S. Y.; Dong, H. W.; Zhu, M. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films. Appl. Phys. Lett.2007, 90, 021917.

    Google Scholar 

  58. Zhu, M.; Wang, H.; Ouyang, L. Z.; Zeng, M. Q. Composite structure and hydrogen storage properties in Mg-base alloys. Int. J. Hydrog. Energy2006, 31, 251–257.

    CAS  Google Scholar 

  59. Zhang, J. G.; Shi, R.; Zhu, Y. F.; Liu, Y. N.; Zhang, Y.; Li, S. S.; Li, L. Q. Remarkable synergistic catalysis of Ni-doped ultrafine TiO2 on hydrogen sorption kinetics of MgH2. ACS Appl. Mater. Interfaces2018, 10, 24975–24980.

    CAS  Google Scholar 

  60. El-Eskandarany, M. S.; Shaban, E.; Aldakheel, F.; Alkandary, A.; Behbehani, M.; Al-Saidi, M. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell. Sci. Rep.2017, 7, 13296.

    Google Scholar 

  61. Zhang, X.; Leng, Z. H.; Gao, M. X.; Hu, J. J.; Du, F.; Yao, J. H.; Pan, H. G.; Liu, Y. F. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. J. Power Sources2018, 398, 183–192.

    CAS  Google Scholar 

  62. Xia, G. L.; Chen, X. W.; Zhou, C. F.; Zhang, C. F.; Li, D.; Gu, Q. F.; Guo, Z. P.; Liu, H. K.; Liu, Z. W.; Yu, X. B. Nano-confined multi-synthesis of a Li-Mg-N-H nanocomposite towards low-temperature hydrogen storage with stable reversibility. J. Mater. Chem. A2015, 3, 12646–12652.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51971008, U1832138, 51731002 and 51920105001), Beijing Municipal Natural Science Foundation (No. 2172031), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofang Liu, Ronghai Yu or Jianglan Shui.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Pu, Y., Li, Z. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 13, 2063–2071 (2020). https://doi.org/10.1007/s12274-020-2808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2808-7

Keywords

Navigation