Skip to main content
Log in

Highly stretchable polymer/silver nanowires composite sensor for human health monitoring

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible strain sensors exhibit outstanding advantages in terms of sensitivity and stability by detecting changes in physical signals. It can be easily attached to human skin and clothed to achieve monitoring of human motion and health. However, general sensing materials shows low stretchability and cannot respond to signals under large deformation. In this work, a highly stretchable polymer composite was developed by adding small amount (0.17 wt.%) of silver nanowires (AgNWs) in stretchable conductive polymer materials. The conductivity of polymer/AgNWs composite is 1.3 S/m with the stretchability up to 500%. The stretchable strain sensor based on the polymer/AgNWs composite can respond to strain signals in real time, even for 1% strain response, and shows excellent stability over 1,000 loading/unloading cycles. Moreover, the strain sensor can be attached to human skin and clothed to monitor joints, throat and pulse of the human body. The human body electrocardiogram (ECG) signal was detected successfully with the polymer/AgNWs electrode, which is comparable to the signal obtained by the commercial electrode. Overall, the sensors enable monitoring of human movement and health. These advantages make it a potential application in wearable devices and electronic skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater.2019, 31, 1801072.

    Google Scholar 

  2. Ma, R. J.; Chou, S. Y.; Xie, Y.; Pei, Q. B. Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem. Soc. Rev.2019, 48, 1741–1786.

    CAS  Google Scholar 

  3. Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev.2019, 48, 1465–1491.

    CAS  Google Scholar 

  4. Huang, S. Y.; Liu, Y.; Zhao, Y.; Ren, Z. F.; Guo, C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater.2019, 29, 1805924.

    Google Scholar 

  5. Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater.2019, 31, 1805921.

    Google Scholar 

  6. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano2017, 11, 9614–9635.

    CAS  Google Scholar 

  7. Peng, Y. Y.; Xiao, S. G.; Yang, J. L.; Lin, J.; Yuan, W.; Gu, W. B.; Wu, X. Z.; Cui, Z. The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Appl. Phys. Lett.2017, 110, 261904.

    Google Scholar 

  8. Li, H. Y.; Guo, H.; Tong, S. C.; Huang, K. Q.; Zhang, C. J.; Wang, X. F.; Zhang, D.; Chen, X. H.; Yang, J. L. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing. J. Phys. D: Appl. Phys.2019, 52, 115501.

    Google Scholar 

  9. Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale2014, 6, 2345–2352.

    CAS  Google Scholar 

  10. Wang, T.; Zhang, Y.; Liu, Q. C.; Cheng, W.; Wang, X. R.; Pan, L. J.; Xu, B. X.; Xu, H. X. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater.2018, 28, 1705551.

    Google Scholar 

  11. Lee, J.; Pyo, S.; Kwon, D. S.; Jo, E.; Kim, W.; Kim, J. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small2019, 15, 1805120.

    Google Scholar 

  12. Huang, G. W.; Xiao, H. M.; Fu, S. Y. Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing. Sci. Rep.2015, 5, 13971.

    Google Scholar 

  13. Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y. X.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater.2018, 30, 1706846.

    Google Scholar 

  14. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano2014, 8, 5154–5163.

    CAS  Google Scholar 

  15. Lan, L. Y.; Yin, T. H.; Jiang, C. M.; Li, X. J.; Yao, Y.; Wang, Z.; Qu, S. X.; Ye, Z. Z.; Ping, J. F.; Ying, Y. B. Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy2019, 62, 319–328.

    CAS  Google Scholar 

  16. Duan, S. S.; Wang, Z. H.; Zhang, L.; Liu, J.; Li, C. Z. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol.2018, 3, 1800020.

    Google Scholar 

  17. Kim, K. H.; Jang, N. S.; Ha, S. H.; Cho, J. H.; Kim, J. M. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small2018, 14, 1704232.

    Google Scholar 

  18. Hou, C. Y.; Huang, T.; Wang, H. Z.; Yu, H.; Zhang, Q. H.; Li, Y. G. A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications. Sci. Rep. 2013, 3, 3138.

    Google Scholar 

  19. Wang, X. X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z. Y.; Ramakrishna, S.; Long, Y. Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano2018, 12, 8588–8596.

    CAS  Google Scholar 

  20. Parida, K.; Kumar, V.; Wang, J. X.; Bhavanasi, V.; Bendi, R.; Lee, P. S. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater.2017, 29, 1702181.

    Google Scholar 

  21. Huang, J. Y.; Li, D. W.; Zhao, M.; Mensah, A.; Lv, P. F.; Tian, X. J.; Huang, F. L.; Ke, H. Z.; Wei, Q. F. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Elect. Mater.2019, 5, 1900241.

    Google Scholar 

  22. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater.2016, 26, 1678–1698.

    CAS  Google Scholar 

  23. Ho, M. D.; Ling, Y. Z.; Yap, L. W.; Wang, Y.; Dong, D. S.; Zhao, Y. M.; Cheng, W. L. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater.2017, 27, 1700845.

    Google Scholar 

  24. Yang, K.; Yin, F. X.; Xia, D.; Peng, H. F.; Yang, J. Z.; Yuan, W. J. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale2019, 11, 9949–9957.

    CAS  Google Scholar 

  25. Zhao, S. F.; Li, J. H.; Cao, D. X.; Zhang, G. P.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y. F.; Sun, R. et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Appl. Mater. Interfaces2017, 9, 12147–12164.

    CAS  Google Scholar 

  26. Kim, S. J.; Mondal, S.; Min, B. K.; Choi, C. G. Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/ graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces2018, 10, 36377–36384.

    CAS  Google Scholar 

  27. Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano2017, 11, 8790–8795.

    CAS  Google Scholar 

  28. Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano2018, 12, 2346–2354.

    CAS  Google Scholar 

  29. Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater.2016, 26, 2078–2084.

    CAS  Google Scholar 

  30. Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun, J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater.2019, 29, 1807882.

    Google Scholar 

  31. Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano2018, 12, 56–62.

    CAS  Google Scholar 

  32. Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano2019, 13, 649–659.

    CAS  Google Scholar 

  33. Gao, Y.; Fang, X. L.; Tan, J. P.; Lu, T.; Pan, L. K.; Xuan, F. Z. Highly sensitive strain sensors based on fragmentized carbon nanotube/ polydimethylsiloxane composites. Nanotechnology2018, 29, 235501.

    Google Scholar 

  34. Zheng, Y. J.; Li, Y. L.; Dai, K.; Wang, Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol.2018, 156, 276–286.

    CAS  Google Scholar 

  35. Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater.2012, 24, 5117–5122.

    CAS  Google Scholar 

  36. Yin, F. Q.; Lu, H. J.; Pan, H.; Ji, H. J.; Pei, S.; Liu, H.; Huang, J. Y.; Gu, J. H.; Li, M. Y.; Wei, J. Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring. Sci. Rep.2019, 9, 2403.

    Google Scholar 

  37. Hu, W. L.; Niu, X. F.; Zhao, R.; Pei, Q. B. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett.2013, 102, 083303.

    Google Scholar 

  38. Yang, Y.; Ding, S.; Araki, T.; Jiu, J. T.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res.2016, 9, 401–414.

    CAS  Google Scholar 

  39. Liang, J. J.; Tong, K.; Pei, Q. B. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater.2016, 28, 5986–5996.

    CAS  Google Scholar 

  40. Zhu, S. E.; Ghatkesar, M. K.; Zhang, C.; Janssen, G. C. A. M. Graphene based piezoresistive pressure sensor. Appl. Phys. Lett.2013, 102, 161904.

    Google Scholar 

  41. Zheng, Q. B.; Liu, X.; Xu, H. R.; Cheung, M. S.; Choi, Y. W.; Huang, H. C.; Lei, H. Y.; Shen, X.; Wang, Z. Y.; Wu, Y. et al. Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horiz.2018, 3, 35–44.

    CAS  Google Scholar 

  42. Liu, X.; Liu, D.; Lee, J. H.; Zheng, Q. B.; Du, X. H.; Zhang, X. Y.; Xu, H. R.; Wang, Z. Y.; Wu, Y.; Shen, X. et al. Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl. Mater. Interfaces2019, 11, 2282–2294.

    CAS  Google Scholar 

  43. Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small2018, 14, 1702829.

    Google Scholar 

  44. Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S. et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett.2013, 13, 2814–2821.

    CAS  Google Scholar 

  45. Sun, J. M.; Pu, X.; Liu, M. M.; Yu, A. F.; Du, C. H.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano2018, 12, 6147–6155.

    CAS  Google Scholar 

  46. Li, H. Y.; Guo, H.; Huang, K. Q.; Liu, B.; Zhang, C. J.; Chen, X. H.; Xu, X. W.; Yang, J. L. Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor. Appl. Phys. A2018, 124, 763.

    CAS  Google Scholar 

  47. Xu, X. W.; Liu, Z. F.; He, P.; Yang, J. L. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J. Phys. D: Appl. Phys.2019, 52, 455401.

    CAS  Google Scholar 

  48. Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

    Google Scholar 

  49. Shi, L.; Zhu, T. X.; Gao, G. X.; Zhang, X. Y.; Wei, W.; Liu, W. F.; Ding, S. J. Highly stretchable and transparent ionic conducting elastomers. Nat. Commun.2018, 9, 2630.

    Google Scholar 

  50. Zhou, Y.; Wan, C. J.; Yang, Y. S.; Yang, H.; Wang, S. C.; Dai, Z. D.; Ji, K. J.; Jiang, H.; Chen, X. D.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater.2019, 29, 1806220.

    Google Scholar 

  51. Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater.2015, 25, 3114–3121.

    CAS  Google Scholar 

  52. Hu, W. L.; Niu, X. F.; Li, L.; Yun, S.; Yu, Z. B.; Pei, Q. B. Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology2012, 23, 344002.

    Google Scholar 

  53. Chen, S.; Wei, Y.; Yuan, X.; Lin, Y.; Liu, L. A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. J. Mater. Chem. C2016, 4, 4304–4311.

    CAS  Google Scholar 

  54. Lu, L. J.; Wei, X. D.; Zhang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J. Mater. Chem. C2017, 5, 7035–7042.

    CAS  Google Scholar 

  55. Lee, C. J.; Park, K. H.; Han, C. J.; Oh, M. S.; You, B.; Kim, Y. S.; Kim, J. W. Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Sci. Rep. 2017, 7, 7959.

    Google Scholar 

  56. Song, Y. X.; Xu, W. M.; Rong, M. Z.; Zhang, M. Q. A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film. J. Mater. Chem. A2019, 7, 2315–2325.

    CAS  Google Scholar 

  57. Zhu, Y.; Qin, Q. Q.; Xu, F.; Fan, F. R.; Ding, Y.; Zhang, T.; Wiley, B. J.; Wang, Z. L. Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys. Rev. B2012, 85, 045443.

    Google Scholar 

  58. Myers, A. C.; Huang, H.; Zhu, Y. Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv.2015, 5, 11627–11632.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51673214 and 61804185), the National Key Research and Development Program of China (No. 2017YFA0206600), the Natural Science Foundation of Hunan Province (No. 2019JJ50804), and the Free Exploration and Innovation Project of Central South University (No. 2019zzts427).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei He or Junliang Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., He, P., Luo, M. et al. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 13, 919–926 (2020). https://doi.org/10.1007/s12274-020-2730-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2730-z

Keywords

Navigation