Skip to main content
Log in

Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure. Despite the success of single atom catalyst synthesis, directly anchoring metal single atoms on three-dimensional (3D) macro support, which is promising to achieve the heterogenization of homogeneous catalysis, remains a challenge and a blank in this field. Herein, we successfully fabricate metal single atoms (Pd, Pt, Ru, Au) on porous carbon nitride/reduced graphene oxide (C3N4/rGO) foam as highly efficient catalysts with convenient recyclability. C3N4/rGO foam features two-dimensional microstructures with abundant N chelating sites for the stabilization of metal single atoms and vertically-aligned hierarchical mesostructure that benefits the mass diffusion. The obtained Pd1/C3N4/rGO monolith catalyst exhibits much enhanced activity over its nanoparticle counterpart for Suzuki-Miyaura reaction. Moreover, the Pd1/C3N4/rGO monolith catalyst can be readily assembled in a flow reactor to achieve the highly efficient continuous production of 4-nitro-1,1′-biphenyl through Suzuki-Miyaura coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhaduri, S.; Mukesh, D. Homogeneous Catalysis: Mechanisms and Industrial Applications, 2nd ed.; Wiley: Hoboken, New Jersey, 2014.

    Google Scholar 

  2. Shende, V. S.; Saptal, V. B.; Bhanage B. M. Recent advances utilized in the recycling of homogeneous catalysis. Chem. Rec.2019, 19, 2022–2043.

    Article  CAS  Google Scholar 

  3. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater.2011, 23, 1044–1060.

    Article  CAS  Google Scholar 

  4. Wu, Y. E.; Wang, D. S.; Li Y. D. Nanocrystals from solutions: Catalysts. Chem. Soc. Rev.2014, 43, 2112–2124.

    Article  CAS  Google Scholar 

  5. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res.2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  6. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem.2011, 3, 634–641.

    Article  CAS  Google Scholar 

  7. Kyriakou, G; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science2012, 335, 1209–1212.

    Article  CAS  Google Scholar 

  8. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed.2016, 128, 10800–10805.

    Article  Google Scholar 

  9. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed.2017, 129, 7041–7045.

    Article  Google Scholar 

  10. Mitchell, S.; Vorobyeva, E.; Pérez-Ramírez, J. The multifaceted reactivity of single-atom heterogeneous catalysts.Angew. Chem., Int. Ed.2018, 57, 15316–15329.

    Article  CAS  Google Scholar 

  11. Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H. Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science2016, 353, 150–154.

    Article  CAS  Google Scholar 

  12. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol.2018, 13, 856–861.

    Article  CAS  Google Scholar 

  13. Moulijn, J. A.; Kreutzer, M. T.; Nijhuis, T. A.; Kapteijn, F. Monolithic catalysts and reactors: High precision with low energy consumption. Adv. Catal.2011, 54, 249–327.

    CAS  Google Scholar 

  14. Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol.2018, 13, 702–707.

    Article  CAS  Google Scholar 

  15. Zhao, C.; Yu, H. Z.; Wang, J.; Che, W.; Li, Z. J.; Yao, T.; Yan, W. S.; Chen, M.; Yang, J.; Wei, S. Q. et al. A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. Mater. Chem. Front.2018, 2, 1317–1322.

    Article  CAS  Google Scholar 

  16. Tang, Z. H.; Shen, S. L.; Zhuang, J.; Wang, X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem., Int. Ed.2010, 122, 4707–4711.

    Article  Google Scholar 

  17. Santana, J. S.; Skrabalak, S. E. Continuous flow routes toward designer metal nanocatalysts. Adv. Energy Mater., in press, DOI: https://doi.org/10.1002/aenm.201902051.

  18. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science2016, 352, 797–800.

    Article  CAS  Google Scholar 

  19. Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun.2017, 8, 16100.

    Article  CAS  Google Scholar 

  20. Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater.2018, 30, 1800588.

    Article  Google Scholar 

  21. Wang, J.; Li, Z. J.; Wu, Y. E.; Li, Y. D. Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater.2018, 30, 1801649.

    Article  Google Scholar 

  22. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal.2018, 1, 781–786.

    Article  CAS  Google Scholar 

  23. Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature2019, 565, 631–635.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev.2019, 119, 1806–1854.

    Article  CAS  Google Scholar 

  25. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem.2018, 2, 65–81.

    Article  CAS  Google Scholar 

  26. Roy, S.; Bauer, T.; Al-Dahhan, M.; Lehner, P.; Turek, T. Monoliths as multiphase reactors: A review. AIChE J.2004, 50, 2918–2938.

    Article  CAS  Google Scholar 

  27. Du, R.; Zhao, Q. C.; Zhang, N.; Zhang, J. Macroscopic carbon nanotube-based 3D monoliths. Small2015, 11, 3263–3289.

    Article  CAS  Google Scholar 

  28. Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater.2012, 24, 4144–4150.

    Article  CAS  Google Scholar 

  29. Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S Batteries. Adv. Mater.2016, 28, 1603–1609.

    Article  CAS  Google Scholar 

  30. Li, C. W.; Qiu, L.; Zhang, B. Q.; Li, D.; Liu, C. Y. Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv. Mater.2016, 28, 1510–1516.

    Article  CAS  Google Scholar 

  31. Yao, B. W.; Chen, J.; Huang, L.; Zhou, Q. Q.; Shi, G. Q. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater.2016, 28, 1623–1629.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0702003), the National Natural Science Foundation of China (No. 21890383 and 21971137) and Beijing Municipal Science & Technology Commission (No. Z191100007219003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Li or Yadong Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, N., Liang, X., Li, Z. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 13, 947–951 (2020). https://doi.org/10.1007/s12274-020-2720-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2720-1

Keywords

Navigation