Skip to main content
Log in

Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Synthesizing large-area ultrathin two-dimensional (2D) nanostructures in aqueous media has received considerable increasing attention but remains a big challenge. Herein, we report a facile method for the synthesis of two unprecedented large-area ultrathin 2D supramolecular nanosheets via ionic self-assembly in water. Upon consideration of electrostatic interaction and repulsive effect, deprotonated tetrakis(4-carboxyphenyl)porphyrin (TCPP) or Fe(III) tetra(4-carboxyphenyl)porphine chloride (TCPP(Fe)) as connection vertex and protonated bis(2-dimethylaminoethyl) ether (BDMAEE) unit as bridging edge connect with each other to form few-layer 2D nanosheet with a thickness of ~ 1.8–1.9 nm, while the lateral size can close to one hundred micrometers. Moreover, the well-dispersed 2D TCPP(Fe)-BDMAEE with heme-like active center displays intrinsic peroxidase-like catalytic activity, which can be used to detect hydrogen peroxide. The present facile strategy highlights new opportunities in constructing large-area ultrathin 2D supramolecular nanomaterials and paves the avenue to expand their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev.2018, 118, 6236–6296.

    CAS  Google Scholar 

  2. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano2015, 9, 11509–11539.

    CAS  Google Scholar 

  3. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano2015, 9, 9451–9469.

    CAS  Google Scholar 

  4. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.2017, 117, 6225–6331.

    CAS  Google Scholar 

  5. Zhuang, X. D.; Mai, Y. Y.; Wu, D. Q.; Zhang, F.; Feng, X. L. Two-dimensional soft nanomaterials: A fascinating world of materials. Adv. Mater.2015, 27, 403–427.

    CAS  Google Scholar 

  6. Zhu, J. H.; Yang, C. Q.; Lu, C. B.; Zhang, F.; Yuan, Z. H.; Zhuang, X. D. Two-dimensional porous polymers: From sandwich-like structure to layered skeleton. Acc. Chem. Res.2018, 51, 3191–3202.

    CAS  Google Scholar 

  7. Evans, A. M.; Parent, L. R.; Flanders, N. C.; Bisbey, R. P.; Vitaku, E.; Kirschner, M. S.; Schaller, R. D.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science2018, 361, 52–57.

    CAS  Google Scholar 

  8. Chen, C.; Joshi, T.; Li, H. F.; Chavez, A. D.; Pedramrazi, Z.; Liu, P. N.; Li, H.; Dichtel, W. R.; Bredas, J. L.; Crommie, M. F. Local electronic structure of a single-layer porphyrin-containing covalent organic framework. ACS Nano2018, 12, 385–391.

    CAS  Google Scholar 

  9. Yuan, K.; Song, T. Q.; Zhu, X. T.; Li, B. L.; Han, B.; Zheng, L.; Li, J. F.; Zhang, X. T.; Hu, W. P. Construction of large-area ultrathin conductive metal-organic framework films through vapor-induced conversion. Small2019, 15, 1804845.

    Google Scholar 

  10. Liao, W. M.; Zhang, J. H.; Yin, S. Y.; Lin, H.; Zhang, X. M.; Wang, J. H.; Wang, H. P.; Wu, K.; Wang, Z.; Fan, Y. N. et al. Tailoring exciton and excimer emission in an exfoliated ultrathin 2D metal-organic framework. Nat. Commun.2018, 9, 2401.

    Google Scholar 

  11. Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemophotodynamic cancer therapy. Nano Res.2019, 12, 1307–1312.

    CAS  Google Scholar 

  12. Li, Y.; Xiao, J.; Shubina, T. E.; Chen, M.; Shi, Z. L.; Schmid, M.; Steinrück, H. P.; Gottfried, J. M.; Lin, N. Coordination and metalation bifunctionality of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin: Toward a mixed-valence two-dimensional coordination network. J. Am. Chem. Soc.2012, 134, 6401–6408.

    CAS  Google Scholar 

  13. Yadav, K.; Pratibha; Verma, S.; Gopakumar, T. G. Solution-processed large-area ultrathin films of metal-coordinated electron-rich adenine-based ligand. J. Phys. Chem. C2019, 123, 20922–20927.

    CAS  Google Scholar 

  14. Zhang, K. D.; Tian, J.; Hanifi, D.; Zhang, Y. B.; Sue, A. C. H.; Zhou, T. Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. T. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc.2013, 135, 17913–17918.

    CAS  Google Scholar 

  15. Zhang, L.; Jia, Y. L.; Wang, H.; Zhang, D. W.; Zhang, Q.; Liu, Y.; Li, Z. T. pH-responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity. Polym. Chem.2016, 7, 1861–1865.

    Google Scholar 

  16. Zhang, Y.; Zhan, T. G.; Zhou, T. Y.; Qi, Q. Y.; Xu, X. N.; Zhao, X. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chem. Commun.2016, 52, 7588–7591.

    CAS  Google Scholar 

  17. Zhang, L.; Zhou, T. Y.; Tian, J.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem.2014, 5, 4715–4721.

    CAS  Google Scholar 

  18. Sasaki, T.; Guerrero, J. M.; Leonard, A. D.; Tour, J. M. Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones. Nano Res.2008, 1, 412–419.

    CAS  Google Scholar 

  19. Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation. Nat. Commun.2016, 7, 10742.

    CAS  Google Scholar 

  20. Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res.2016, 9, 3858–3867.

    CAS  Google Scholar 

  21. Shin, S.; Lim, S.; Kim, Y.; Kim, T.; Choi, T. L.; Lee, M. Supramolecular switching between flat sheets and helical tubules triggered by coordination interaction. J. Am. Chem. Soc.2013, 135, 2156–2159.

    CAS  Google Scholar 

  22. Bösch, C. D.; Langenegger, S. M.; Häner, R. Light-harvesting nanotubes formed by supramolecular assembly of aromatic oligophosphates. Angew. Chem., Int. Ed.2016, 55, 9961–9964.

    Google Scholar 

  23. Zheng, Y. J.; Zhou, H. X.; Liu, D.; Floudas, G.; Wagner, M.; Koynov, K.; Mezger, M.; Butt, H. J.; Ikeda, T. Supramolecular thiophene nanosheets. Angew. Chem., Int. Ed.2013, 52, 4845–4848.

    CAS  Google Scholar 

  24. De, S.; Ramakrishnan, S. Charge-transfer reinforced folding of novel ionenes. Macromolecules2009, 42, 8599–8603.

    CAS  Google Scholar 

  25. Jiang, S. Y.; Zhao, X. Soluble two-dimensional supramolecular organic frameworks (SOFs): An emerging class of 2D supramolecular polymers with internal long-range orders. Chinese J. Polym. Sci.2019, 37, 1–10.

    CAS  Google Scholar 

  26. Hu, B. J.; Sun, S. T.; Wu, B. H.; Wu, P. Y. Colloidally stable monolayer nanosheets with colorimetric responses. Small2019, 15, 1804975.

    Google Scholar 

  27. Dong, R. H.; Pfeffermann, M.; Liang, H. W.; Zheng, Z. K.; Zhu, X.; Zhang, J.; Feng, X. L. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed.2015, 54, 12058–12063.

    CAS  Google Scholar 

  28. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Mitina, T. G.; Blatov, V. A. Entangled two-dimensional coordination networks: A general survey. Chem. Rev.2014, 114, 7557–7580.

    CAS  Google Scholar 

  29. Pfeffermann, M.; Dong, R. H.; Graf, R.; Zajaczkowski, W.; Gorelik, T.; Pisula, W.; Narita, A.; Müllen, K.; Feng, X. L. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc.2015, 137, 14525–14532.

    CAS  Google Scholar 

  30. Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater.2015, 27, 7372–7378.

    CAS  Google Scholar 

  31. Lu, Q. P.; Zhao, M. T.; Chen, J. Z.; Chen, B.; Tan, C. L.; Zhang, X.; Huang, Y.; Yang, J.; Cao, F. F.; Yu, Y. F. et al. In situ synthesis of metal sulfide nanoparticles based on 2D metal-organic framework nanosheets. Small2016, 12, 4669–4674.

    CAS  Google Scholar 

  32. Cao, F. F.; Zhao, M. T.; Yu, Y. F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X. H.; Lu, Q. P.; Zhang, X.; Zhang, Z. C. et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc.2016, 138, 6924–6927.

    CAS  Google Scholar 

  33. He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small2018, 14, 1703929.

    Google Scholar 

  34. Parvez, K.; Wu, Z. S.; Li, R. J.; Liu, X. J.; Graf, R.; Feng, X. L.; Müllen, K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc.2014, 136, 6083–6091.

    CAS  Google Scholar 

  35. Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science2014, 346, 1356–1359.

    CAS  Google Scholar 

  36. Zheng, J.; Zhang, H.; Dong, S. H.; Liu, Y. P.; Nai, C. T.; Shin, H. S.; Jeong, H. Y.; Liu, B.; Loh, K. P. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun.2014, 5, 2995.

    Google Scholar 

  37. Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc.2013, 135, 14952–14955.

    CAS  Google Scholar 

  38. Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano2015, 9, 12496–12505.

    CAS  Google Scholar 

  39. Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater.2016, 28, 4149–4155.

    CAS  Google Scholar 

  40. Yuan, K.; Song, T. Q.; Wang, D. W.; Zhang, X. T.; Gao, X.; Zou, Y.; Dong, H. L.; Tang, Z. Y.; Hu, W. P. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew. Chem., Int. Ed.2018, 57, 5708–5713.

    CAS  Google Scholar 

  41. Chen, Y.; Tan, C. L.; Zhang, H.; Wang, L. Z. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev.2015, 44, 2681–2701.

    CAS  Google Scholar 

  42. Liu, Y.; Purich, D. L.; Wu, C. C.; Wu, Y.; Chen, T.; Cui, C.; Zhang, L. Q.; Cansiz, S.; Hou, W. J.; Wang, Y. Y. et al. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzyme-like properties. J. Am. Chem. Soc.2015, 137, 14952–14958.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (No. 51733003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyi Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Wu, P. Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water. Nano Res. 13, 868–874 (2020). https://doi.org/10.1007/s12274-020-2709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2709-9

Keywords

Navigation