Skip to main content
Log in

Edge induced band bending in van der Waals heterojunctions: A first principle study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The dangling bond free nature of two-dimensional (2D) material surface/interface makes van der Waals (vdW) heterostructure attractive for novel electronic and optoelectronic applications. But in practice, edge is unavoidable and could cause band bending at 2D material edge analog to surface/interface band bending in conventional three-dimensional (3D) materials. Here, we report a first principle simulation on edge band bending of free standing MoS2/WS2 vdW heterojunction. Due to the imbalance charges at edge, S terminated edge causes upward band bending while Mo/W terminated induces downward bending in undoped case. The edge band bending is comparable to band gap and could obviously harm electronic and optoelectronic properties. We also investigate the edge band bending of electrostatic doped heterojunction. N doping raises the edge band whereas p doping causes a decline of edge band. Heavy n doping even reverses the downward edge band bending at Mo/W terminated edge. In contrast, heavy p doping doesn’t invert the upward bending to downward. Comparing with former experiments, the expected band gap narrowing introduced by interlayer potential gradient at edge is not observed in our free-standing structures and suggests substrate’s important role in this imbalance charge induced phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari, A. C.; Bonaccorso, F.; Fal’Ko, V.; Novoselov, K. S.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale2015, 7, 4598–4810.

    CAS  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature2005, 438, 197–200.

    CAS  Google Scholar 

  3. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science2007, 317, 932–934.

    CAS  Google Scholar 

  4. Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mater.2012, 24, 5088–5093.

    CAS  Google Scholar 

  5. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol.2015, 10, 517–521.

    CAS  Google Scholar 

  6. Wang, X. T.; Li, Y. W.; Pang, Y. X.; Sun, Y. H.; Zhao, X. G.; Wang, J. R.; Zhang, L. J. Rational design of new phases of tin monosulfide by first-principles structure searches. Sci. China Phys., Mech. Astron.2018, 61, 107311.

    Google Scholar 

  7. Sun, Y. H.; Luo, S. L.; Zhao, X. G.; Biswas, K.; Li, S. L.; Zhang, L. J. InSe: A two-dimensional material with strong interlayer coupling. Nanoscale2018, 10, 7991–7998.

    CAS  Google Scholar 

  8. Akbari, E.; Jahanbin, K.; Afroozeh, A.; Yupapin, P.; Buntat, Z. Brief review of monolayer molybdenum disulfide application in gas sensor. Phys. B: Condens. Matter2018, 545, 510–518.

    CAS  Google Scholar 

  9. Premasiri, K.; Gao, X. P. A. Tuning spin-orbit coupling in 2D materials for spintronics: A topical review. J. Phys.: Condens. Matter2019, 31, 193001.

    CAS  Google Scholar 

  10. Jha, P. K.; Shitrit, N.; Ren, X. X.; Wang, Y.; Zhang, X. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface. Phys. Rev. Lett.2018, 121, 116102.

    CAS  Google Scholar 

  11. Zhang, X. K.; Peng, N.; Liu, T. T.; Zheng, R. T.; Xia, M. T.; Yu, H. X.; Chen, S.; Shui, M.; Shu, J.. Review on niobium-based chalcogenides for electrochemical energy storage devices: Application and progress. Nano Energy2019, 65, 104049.

    CAS  Google Scholar 

  12. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater.2017, 2, 17033.

    CAS  Google Scholar 

  13. Sun, Y. H.; Wang, X. J.; Zhao, X. G.; Shi, Z. M.; Zhang, L. J. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond.2018, 39, 072001.

    Google Scholar 

  14. Shi, Z. M.; Wang, X. J.; Sun, Y. H.; Li, Y. W.; Zhang, L. J. Interlayer coupling in two-dimensional semiconductor materials. Semicond. Sci. Technol.2018, 33, 093001.

    Google Scholar 

  15. Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev.2018, 47, 6388–6409.

    CAS  Google Scholar 

  16. Yan, R. H.; Ourmazd, A.; Lee, K. F. Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Devices1992, 39, 1704–1710.

    CAS  Google Scholar 

  17. Li, L. K.; Yu, Y. J.; Ye, G J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol.2014, 9, 372–377.

    CAS  Google Scholar 

  18. Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett.2013, 103, 103501.

    Google Scholar 

  19. Pradhan, N. R.; Rhodes, D.; Xin, Y.; Memaran, S.; Bhaskaran, L.; Siddiq, M.; Hill, S.; Ajayan, P. M.; Balicas, L. Ambipolar molybdenum diselenide field-effect transistors: Field-effect and hall mobilities. ACS Nano2014, 8, 7923–7929.

    CAS  Google Scholar 

  20. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol.2013, 8, 497–501.

    CAS  Google Scholar 

  21. Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev.1947, 71, 717–727.

    Google Scholar 

  22. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature2013, 499, 419–425.

    CAS  Google Scholar 

  23. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    CAS  Google Scholar 

  24. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science2013, 340, 1311–1314.

    CAS  Google Scholar 

  25. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science2016, 353, aac9439.

    CAS  Google Scholar 

  26. Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett.2013, 13, 3664–3670.

    CAS  Google Scholar 

  27. Lee, C. H.; Lee, G H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p—n junctions with van der Waals heterointerfaces. Nat. Nanotechnol.2014, 9, 676–681.

    CAS  Google Scholar 

  28. Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett.2014, 14, 4785–4791.

    CAS  Google Scholar 

  29. Flöry, N.; Jain, A.; Bharadwaj, P.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett.2015, 107, 123106.

    Google Scholar 

  30. Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol.2013, 8, 952–958.

    CAS  Google Scholar 

  31. Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano2016, 10, 3852–3858.

    CAS  Google Scholar 

  32. Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small2017, 13, 1700268.

    Google Scholar 

  33. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett.2013, 13, 2615–2622.

    CAS  Google Scholar 

  34. Li, H. N.; Huang, J. K.; Shi, Y. M.; Li, L. J. Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors. Adv. Mater. Interfaces2019, 6, 1900220.

    CAS  Google Scholar 

  35. Bana, H.; Travaglia, E.; Bignardi, L.; Lacovig, P.; Sanders, C. E.; Dendzik, M.; Michiardi, M.; Bianchi, M.; Lizzit, D.; Presel, F. et al. Epitaxial growth of single-orientation high-quality MoS2 monolayers. 2D Mater.2018, 5, 035012.

    Google Scholar 

  36. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano2013, 7, 8963–8971.

    CAS  Google Scholar 

  37. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett.2013, 13, 4212–4216.

    CAS  Google Scholar 

  38. Han, H. V.; Lu, A. Y.; Lu, L. S.; Huang, J. K.; Li, H. N.; Hsu, C. L.; Lin, Y. C.; Chiu, M. H.; Suenaga, K.; Chu, C. W. et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano2016, 10, 1454–1461.

    CAS  Google Scholar 

  39. Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun.2017, 8, 15881.

    CAS  Google Scholar 

  40. Zhang, X. K.; Liao, Q. L.; Kang, Z.; Liu, B. S.; Ou, Y.; Du, J. L.; Xiao, J. K.; Gao, L.; Shan, H. Y.; Luo, Y. et al. Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano2019, 13, 3280–3291.

    CAS  Google Scholar 

  41. Nouchi, R. Edge-induced Schottky barrier modulation at metal contacts to exfoliated molybdenum disulfide flakes. J. Appl. Phys.2016, 120, 064503.

    Google Scholar 

  42. Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett.2014, 14, 2443–2447.

    CAS  Google Scholar 

  43. Zhang, C. D.; Chen, Y. X.; Huang, J. K.; Wu, X. X.; Li, L. J.; Yao, W.; Tersoff, J.; Shih, C. K. Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun.2016, 7, 10349.

    Google Scholar 

  44. Shin, E. H.; Kim, H.; Kim, Y. S. In-plane band bending in hexagonal monolayer WS2 by edge polarization. Phys. Rev. B2019, 99, 205427.

    CAS  Google Scholar 

  45. Neugebauer, J.; Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B1992, 46, 16067–16080.

    CAS  Google Scholar 

  46. Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B2001, 63, 245407.

    Google Scholar 

  47. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  48. Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B1991, 43, 1993–2006.

    CAS  Google Scholar 

  49. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter2002, 14, 2745–2779.

    CAS  Google Scholar 

  50. Komsa, H. P.; Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B2013, 88, 085318.

    Google Scholar 

  51. Zhang, C. X.; Gong, C.; Nie, Y. F.; Min, K. A.; Liang, C. P.; Oh, Y. J.; Zhang, H. J.; Wang, W. H.; Hong, S.; Colombo, L. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Mater.2016, 4, 015026.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51991340, 51991342, 51527802, 51972022, 51722203, and 51672026), the Overseas Expertise Introduction Projects for Discipline Innovation (No. B14003), the National Key Research and Development Program of China (Nos. 2016YFA0202701 and 2018YFA0703503), the Natural Science Foundation of Beijing Municipality (No. Z180011), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-18-004A2 and FRF-TP-18-001C1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Zhang or Yue Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Kang, Z., Liao, Q. et al. Edge induced band bending in van der Waals heterojunctions: A first principle study. Nano Res. 13, 701–708 (2020). https://doi.org/10.1007/s12274-020-2679-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2679-y

Keywords

Navigation