Skip to main content
Log in

Layer-dependent signatures for exciton dynamics in monolayer and multilayer WSe2 revealed by fluorescence lifetime imaging measurement

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition-metal dichalcogenide (TMD) materials have aroused noticeable interest due to their distinguished electronic and optical properties. However, little is known about their complex exciton properties together with the exciton dynamics process which have been expected to influence the performance of optoelectronic devices. The process of fluorescence can well reveal the process of exciton transition after excitation. In this work, the room-temperature layer-dependent exciton dynamics properties in layered WSe2 are investigated by the fluorescence lifetime imaging microscopy (FLIM) for the first time. This paper focuses on two mainly kinds of excitons including the direct transition neutral excitons and trions. Compared with the lifetime of neutral excitons (< 0.3 ns within four-layer), trions possess a longer lifetime (~ 6.6 ns within four-layer) which increases with the number of layers. We attribute the longer-lived lifetime to the increasing number of trions as well as the varieties of trion configurations in thicker WSe2. Besides, the whole average lifetime increases over 10% when WSe2 flakes added up from monolayer to four-layer. This paper provides a novel tuneable layer-dependent method to control the exciton dynamics process and finds a relatively longer transition lifetime of trions at room temperature, enabling to investigate in the charge transport in TMD-based optoelectronics devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    CAS  Google Scholar 

  2. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  3. Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

    CAS  Google Scholar 

  4. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Google Scholar 

  5. Zhang, X. X.; Cao, T.; Lu, Z. G.; Lin, Y. C.; Zhang, F.; Wang, Y.; Li, Z. Q.; Hone, J. C.; Robinson, J. A.; Smirnov, D. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 2017, 12, 883–888.

    CAS  Google Scholar 

  6. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    CAS  Google Scholar 

  7. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    CAS  Google Scholar 

  8. Jones, A. M.; Yu, H. Y.; Ross, J. S.; Klement, P.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130–134.

    CAS  Google Scholar 

  9. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Google Scholar 

  10. Godde, T.; Schmidt, D.; Schmutzler, J.; ABmann, M.; Debus, J.; Withers, F.; Alexeev, E.; Del Pozo-Zamudio, O.; Skrypka, O.; Novoselov, K. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys. Rev. B2016, 94, 165301.

    Google Scholar 

  11. Vaclavkova, D.; Wyzula, J.; Nogajewski, K.; Bartos, M.; Slobodeniuk, A. O.; Faugeras, C.; Potemski, M.; Molas, M. R. Singlet and triplet trions in WS2 monolayer encapsulated in hexagonal boron nitride. Nanotechnology2018, 29, 325705.

    CAS  Google Scholar 

  12. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    CAS  Google Scholar 

  13. Pei, J. J.; Yang, J.; Xu, R. J.; Zeng, Y. H.; Myint, Y. W.; Zhang, S.; Zheng, J. C.; Qin, Q. H.; Wang, X. B.; Jiang, W. G. et al. Exciton and trion dynamics in bilayer MoS2. Small2015, 11, 6384–6390.

    CAS  Google Scholar 

  14. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    CAS  Google Scholar 

  15. Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    CAS  Google Scholar 

  16. Jin, W. C.; Yeh, P. C.; Zaki, N.; Zhang, D. T.; Sadowski, J. T.; Al-Mahboob, A.; van Der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2013, 111, 106801.

    Google Scholar 

  17. Vasili, P.; Tersoff, J.; Phaedon, A. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 2004, 92, 257402.

    Google Scholar 

  18. Berghäuser, G.; Malic, E. Analytical approach to excitonic properties of MoS2. Phys. Rev. B2014, 89, 125309.

    Google Scholar 

  19. Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. Acs Nano2013, 7, 5660–5665.

    CAS  Google Scholar 

  20. Yang, J.; Xu, R. J.; Pei, J. J.; Myint, Y. W.; Wang, F.; Wang, Z.; Zhang, S.; Yu, Z. F.; Lu, Y. R. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Sci. Appl. 2015, 4, e312.

    Google Scholar 

  21. Selig, M.; Berghäuser, G.; Raja, A.; Nagler, P.; Schüller, C.; Heinz, T. F.; Korn, T.; Chernikov, A.; Malic, E.; Knorr, A. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 2016, 7, 13279.

    CAS  Google Scholar 

  22. Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794–2800.

    CAS  Google Scholar 

  23. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 2014, 6, 6242.

    Google Scholar 

  24. Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate Layers. J. Am. Chem. Soc. 2017, 139, 3438–3445.

    CAS  Google Scholar 

  25. Patton, B.; Langbein, W.; Woggon, U. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B2003, 68, 125316.

    Google Scholar 

  26. Lui, C. H.; Frenzel, A. J.; Pilon, D. V.; Lee, Y. H.; Ling, X.; Akselrod, G. M.; Kong, J.; Gedik, N. Trion-induced negative photoconductivity in monolayer MoS2. Phys. Rev. Lett. 2014, 113, 166801.

    CAS  Google Scholar 

  27. Barker, S. E.; Wang, S. J.; Godiksen, R. H.; Castellanos, G. W.; Berghuis, M.; Raziman, T. V.; Curto, A. G.; Rivas, J. G. Preserving the emission lifetime and efficiency of a monolayer semiconductor upon transfer. Adv. Opt. Mater. 2019, 7, 1900351.

    Google Scholar 

  28. Urbaszek, B.; Marie, X.; Amand, T.; Krebs, O.; Voisin, P.; Maletinsky, P.; Högele, A.; Imamoglu, A. Nuclear spin physics in quantum dots: An optical investigation. Rev. Mod. Phys. 2013, 85, 79–133.

    CAS  Google Scholar 

  29. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Google Scholar 

  30. Cai, M. Z.; Thorpe, D.; Adamson, D. H.; Schniepp, H. C. Methods of graphite exfoliation. J. Mater. Chem. 2012, 22, 24992–25002.

    CAS  Google Scholar 

  31. Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small2013, 9, 1974–1981.

    CAS  Google Scholar 

  32. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    CAS  Google Scholar 

  33. Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

    CAS  Google Scholar 

  34. Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

    CAS  Google Scholar 

  35. Becker, W.; Su, B.; Holub, O.; Weisshart, K. FLIM and FCS detection in laser-scanning microscopes: Increased efficiency by GaAsP hybrid detectors. Microsc. Res. Tech. 2011, 74, 804–811.

    CAS  Google Scholar 

  36. Setyawan, W.; Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools. Comput. Mater. Sci. 2010, 49, 299–312.

    Google Scholar 

  37. Grimme, S. Semiempirical GGA‐type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    CAS  Google Scholar 

  38. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

    CAS  Google Scholar 

  39. del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S. M.; Nguyen, M. A.; Mallouk, T. E.; Terrones, M.; Pimenta, M. A. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. Acs Nano2014, 8, 9629–9635.

    Google Scholar 

  40. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale2013, 5, 9677–9683.

    CAS  Google Scholar 

  41. He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett.2014, 113, 026803.

    Google Scholar 

  42. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photolu-minescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express2013, 21, 4908–4916.

    CAS  Google Scholar 

  43. Plechinger, G.; Nagler, P.; Arora, A.; Schmidt, R.; Chernikov, A.; Del Águila, A. G.; Christianen, P. C. M.; Bratschitsch, R.; Schüller, C.; Korn, T. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide. Nat. Commun. 2016, 7, 12715.

    CAS  Google Scholar 

  44. Zhu, W. Q.; Esteban, R.; Borisov, A. G.; Baumberg, J. J.; Nordlander, P.; Lezec, H. J.; Aizpurua, J.; Crozier, K. B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016, 7, 11495.

    CAS  Google Scholar 

  45. Özden, A.; Şar, H.; Yeltik, A.; Madenoğlu, B.; Sevik, C. Ay, F.; Perkgöz, N. K. CVD grown 2D MoS2 layers: A photoluminescence and fluorescence lifetime imaging study. Phys. Status Solidi RRL2016, 10, 792–796.

    Google Scholar 

  46. Hegarty, J.; Goldner, L.; Sturge, M. D. Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures. Phys. Rev. B1984, 30, 7346(R).

    CAS  Google Scholar 

  47. Yang, J.; Xu, R. J.; Pei, J. J.; Myint, Y. W.; Wang, F.; Wang, Z.; Zhang, S.; Yu, Z. F.; Lu, Y. R. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Sci. Appl. 2015, 4, e312.

    Google Scholar 

  48. Wang, H. N.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phys. Rev. B2016, 93, 045407.

    Google Scholar 

  49. Singh, A.; Tran, K.; Kolarczik, M.; Seifert, J.; Wang, Y. P.; Hao, K.; Pleskot, D.; Gabor, N. M.; Helmrich, S.; Owschimikow, N. et al. Long-lived valley polarization of intravalley trions in monolayer WSe2. Phys. Rev. Lett. 2016, 117, 257402.

    Google Scholar 

  50. Tripathi, L. N.; Iff, O.; Betzold, S.; Dusanowski, Ł.; Emmerling, M.; Moon, K.; Lee, Y. J.; Kwon, S. H.; Hofling, S.; Schneider, C. Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics2018, 5, 1919–1926.

    CAS  Google Scholar 

  51. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

    Google Scholar 

  52. Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale2015, 7, 7402–7408.

    CAS  Google Scholar 

  53. Danon, J.; Nazarov, Y. V. Pauli spin blockade in the presence of strong spin-orbit coupling. Phys. Rev. B2009, 80, 041301.

    Google Scholar 

  54. Patton, B.; Langbein, W.; Woggon, U. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B2003, 68, 125316.

    Google Scholar 

  55. Molas, M. R.; Nogajewski, K.; Slobodeniuk, A. O.; Binder, J.; Bartos, M.; Potemski, M. The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale2017, 9, 13128–13141.

    CAS  Google Scholar 

  56. Zhou, Y.; Scuri, G.; Wild, D. S.; High, A. A.; Dibos, A.; Jauregui, L. A.; Shu, C.; De Greve, K.; Pistunova, K.; Joe, A. Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 2017, 12, 856–860.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51527901, 51575298, 51705285, and 11890672). And we are grateful to Tsinghua-Nikon Imaging Core Facility for providing technical support and to Yanli Zhang for assistance with confocal microscopy and image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dameng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, H., Qiu, C. et al. Layer-dependent signatures for exciton dynamics in monolayer and multilayer WSe2 revealed by fluorescence lifetime imaging measurement. Nano Res. 13, 661–666 (2020). https://doi.org/10.1007/s12274-020-2670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2670-7

Keywords

Navigation