Skip to main content
Log in

NaV6O15: A promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rechargeable magnesium batteries (RMBs) are getting more and more attention because of their high-energy density, high-security and low-cost. Nevertheless, the high charge density of Mg2+ makes the diffusion of Mg2+ in the conventional cathodes very slow, resulting in a lack of appropriate electrode materials for RMBs. In this work, we enlarge the layer spacing of V2O5 by introducing Na+ in the crystal structure to promote the diffusion kinetics of Mg2+. The NaV6O15 (NVO) synthesized by a facile method is studied as a cathode material for RMBs with the anhydrous pure Mg2+ electrolyte. As a result, the NVO not only exhibits high discharge capacity (119.2 mAh·g−1 after 100 cycles at the current density of 20 mA·g−1) and working voltage (above 1.6 V vs. Mg2+/Mg), but also expresses good rate capability. Besides, the ex-situ characterizations results reveal that the Mg2+ storage mechanism in NVO is based on the intercalation and de-intercalation. The density functional theory (DFT) calculation results further indicate that Mg2+ tends to occupy the semi-occupied sites of Na+ in the NVO. Moreover, the galvanostatic intermittent titration technique (GITT) demonstrates that NVO electrode has the fast diffusion kinetics of Mg2+ during discharge process ranging from 7.55 × 10–13 to 2.41 × 10–11 cm2·s−1. Our work proves that the NVO is a potential cathode material for RMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci.2011, 4, 3243–3262.

    CAS  Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc.2013, 135, 1167–1176.

    CAS  Google Scholar 

  3. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol.2014, 9, 187–192.

    CAS  Google Scholar 

  4. McCalla, E.; Abakumov, A. M.; Saubanère, M.; Foix, D.; Berg, E. J.; Rousse, G.; Doublet, M. L.; Gonbeau, D.; Novák, P.; van Tendeloo, G. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science2015, 350, 1516–1521.

    CAS  Google Scholar 

  5. Wen, Z.; Yeh, M. H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. A.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv.2016, 2, e1600097.

    Google Scholar 

  6. Zhao, J. H.; Kang, T.; Chu, Y. L.; Chen, P.; Jin, F.; Shen, Y. B.; Chen, L. W. A polyimide cathode with superior stability and rate capability for lithium-ion batteries. Nano Res.2019, 12, 1355–1360.

    CAS  Google Scholar 

  7. Chen, S. L.; Zou, J.; Li, Y. H.; Li, N.; Wu, M.; Lin, J. H.; Zhang, J. M.; Cao, J.; Feng, J. C.; Niu, X. B. et al. Atomic-scale structural and chemical evolution of Li3V2(PO4)3 cathode cycled at high voltage window. Nano Res.2019, 12, 1675–1681.

    CAS  Google Scholar 

  8. Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev.2014, 114, 11683–11720.

    CAS  Google Scholar 

  9. Wang, Y.; Wang, C.; Yi, X.; Hu, Y.; Wang, L.; Ma, L.; Zhu, G.; Chen, T.; Jin, Z. Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ co-intercalation in VS4 nanodendrites. Energy Storage Materials2019, 23, 741–748.

    Google Scholar 

  10. Wang, Y.; Liu, Z.; Wang, C.; Yi, X.; Chen, R.; Ma, L.; Hu, Y.; Zhu, G.; Chen, T.; Tie, Z.; et al. Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv. Mater.2018, 30, 1802563.

    Google Scholar 

  11. Wang, Y.; Chen, R.; Chen, T.; Lv, H.; Zhu, G.; Ma, L.; Wang, C.; Jin, Z.; Liu, J. Emerging non-lithium ion batteries. Energy Storage Materials2016, 4, 103–129.

    Google Scholar 

  12. Wang, Y.; Xue, X.; Liu, P.; Wang, C.; Yi, X.; Hu, Y.; Ma, L.; Zhu, G.; Chen, R.; Chen, T.; et al. Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2-x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano2018, 12, 12492–12502.

    CAS  Google Scholar 

  13. Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. The challenge of developing rechargeable magnesium batteries. MRS Bull.2014, 39, 453–460.

    CAS  Google Scholar 

  14. Koketsu, T.; Ma, J. W.; Morgan, B. J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortière, A.; Salanne, M.; Dardoize, F. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater.2017, 16, 1142–1148.

    CAS  Google Scholar 

  15. Zhang, R. G.; Arthur, T. S.; Ling, C.; Mizuno, F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J. Power Sources2015, 282, 630–638.

    CAS  Google Scholar 

  16. Amatucci, G. G.; Badway, F.; Singhal, A.; Beaudoin, B.; Skandan, G.; Bowmer, T.; Plitz, I.; Pereira, N.; Chapman, T.; Jaworski, R. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc.2001, 148, A940–A950.

    CAS  Google Scholar 

  17. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Kong, W. H.; Lin, H. N.; Wang, L.; Jin, Z. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater.2019, 9, 1900145.

    Google Scholar 

  18. NuLi, Y.; Zheng, Y. P.; Wang, Y.; Yang, J.; Wang, J. L. Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J. Mater. Chem.2011, 21, 12437–12443.

    CAS  Google Scholar 

  19. Ma, Z.; MacFarlane, D. R.; Kar, M. Mg cathode materials and electrolytes for rechargeable Mg batteries: A review. Batter. Supercaps.2019, 2, 115–127.

    Google Scholar 

  20. Zhang, R. G.; Ling, C. Unveil the chemistry of olivine FePO4 as magnesium battery cathode. ACS Appl. Mater. Interfaces2016, 8, 18018–18026.

    CAS  Google Scholar 

  21. Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature2000, 407, 724–727.

    CAS  Google Scholar 

  22. Xiong, F. Y.; Fan, Y. Q.; Tan, S. S.; Zhou, L. M.; Xu, Y. Y.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Magnesium storage performance and mechanism of CuS cathode. Nano Energy2018, 47, 210–216.

    CAS  Google Scholar 

  23. Zhang, R. G.; Yu, X. Q.; Nam, K. W.; Ling, C.; Arthur, T. S.; Song, W.; Knapp, A. M.; Ehrlich, S. N.; Yang, X. Q.; Matsui, M. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun.2012, 23, 110–113.

    CAS  Google Scholar 

  24. Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem., Int. Ed.2005, 44, 4391–4395.

    CAS  Google Scholar 

  25. Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc.2009, 131, 12086–12087.

    CAS  Google Scholar 

  26. Su, D. W.; Wang, G. X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano2013, 7, 11218–11226.

    CAS  Google Scholar 

  27. Novák, P.; Desilvestro, J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc.1993, 140, 140–144.

    Google Scholar 

  28. Novák, P.; Scheifele, W.; Joho, F.; Haas, O. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J. Electrochem. Soc.1995, 142, 2544–2550.

    Google Scholar 

  29. Gautam, G. S.; Canepa, P.; Malik, R.; Liu, M.; Persson, K.; Ceder, G. First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun.2015, 51, 13619–13622.

    CAS  Google Scholar 

  30. Sai Gautam, G.; Canepa, P.; Richards, W. D.; Malik, R.; Ceder, G. Role of structural H2O in intercalation electrodes: The case of Mg in nanocrystalline xerogel-V2O5. Nano Lett.2016, 16, 2426–2431.

    CAS  Google Scholar 

  31. Yu, L.; Zhang, X. G. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J. Colloid Interface Sci.2004, 278, 160–165.

    CAS  Google Scholar 

  32. Perera, S. D.; Archer, R. B.; Damin, C. A.; Mendoza-Cruz, R.; Rhodes, C. P. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage. J. Power Sources2017, 343, 580–591.

    CAS  Google Scholar 

  33. Rashad, M.; Zhang, H. Z.; Asif, M.; Feng, K.; Li, X. F.; Zhang, H. M. Low-cost room-temperature synthesis of NaV3O8•1.69H2O nanobelts for Mg batteries. ACS Appl. Mater. Interfaces2018, 10, 4757–4766.

    CAS  Google Scholar 

  34. Tang, H.; Xiong, F. Y.; Jiang, Y. L.; Pei, C. Y.; Tan, S. S.; Yang, W.; Li, M. S.; An, Q. Y.; Mai, L. Q. Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy2019, 58, 347–354.

    CAS  Google Scholar 

  35. Deng, X. W.; Xu, Y. A.; An, Q. Y.; Xiong, F. Y.; Tan, S. S.; Wu, L. M.; Mai, L. Q. Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J. Mater. Chem. A2019, 7, 10644–10650.

    CAS  Google Scholar 

  36. Cabello, M.; Nacimiento, F.; Alcántara, R.; Lavela, P.; Ortiz, G.; Tirado, J. L. Nanobelts of beta-sodium vanadate as electrode for magnesium and dual magnesium-sodium batteries. J. Electrochem. Soc.2016, 163, A2781–A2790.

    CAS  Google Scholar 

  37. Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir2013, 29, 10964–10972.

    CAS  Google Scholar 

  38. Jiang, D. L.; Wang, H.; Li, G. P.; Li, G. Q.; Lan, X. Z.; Abib, M. H.; Zhang, Z. P.; Jiang, Y. Self-combustion synthesis and ion diffusion performance of NaV6O15 nanoplates as cathode materials for sodium-ion batteries. J. Electrochem. Soc.2015, 162, A697–A703.

    CAS  Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953–17979.

    Google Scholar 

  42. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B1998, 57, 1505–1509.

    CAS  Google Scholar 

  43. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B1976, 13, 5188–5192.

    Google Scholar 

  44. Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst.2008, 41, 653–658.

    CAS  Google Scholar 

  45. Pereira-Ramos, J. P.; Messina, R.; Znaidi, L.; Baffier, N. Electrochemical lithium intercalation in Na0.33V2O5 bronze prepared by sol-gel processes. Solid State Ionics1988, 28, 886–894.

    Google Scholar 

  46. Wang, Y. R.; Xue, X. L.; Liu, P. Y.; Wang, C. X.; Yi, X.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Chen, R. P.; Chen, T. et al. Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2–x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano2018, 12, 12492–12502.

    CAS  Google Scholar 

  47. Cabello, M.; Alcántara, R.; Nacimiento, F.; Lavela, P.; Aragón, M. J.; Tirado, J. L. Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: A case of sodium-magnesium hybrid battery. Electrochim. Acta2017, 246, 908–913.

    CAS  Google Scholar 

  48. Tang, H.; Peng, Z.; Wu, L.; Xiong, F. Y.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Vanadium-based cathode materials for rechargeable multivalent batteries: Challenges and opportunities. Electrochem. Energy Rev.2018, 1, 169–199.

    CAS  Google Scholar 

  49. Liu, H. M.; Wang, Y. G.; Li, L.; Wang, K. X.; Hosono, E.; Zhou, H. S. Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J. Mater. Chem.2009, 19, 7885–7891.

    CAS  Google Scholar 

  50. Liu, H. M.; Zhou, H. S.; Chen, L. P.; Tang, Z. F.; Yang, W. S. Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. J. Power Sources2011, 196, 814–819.

    CAS  Google Scholar 

  51. Zhao, M. S.; Zhang, W. G.; Song, X. P. Lithium-ion storage properties of a micro/nanosheet-like NaV6O15 anode in aqueous solution. Dalton Trans.2017, 46, 3857–3863.

    CAS  Google Scholar 

  52. Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics2002, 148, 45–51.

    CAS  Google Scholar 

  53. Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta2010, 55, 2384–2390.

    CAS  Google Scholar 

  54. Zeng, J.; Wu, D. Z.; Wang, X.; Wu, J. N.; Li, J. Y.; Wang, J.; Zhao, J. B. Insights into the Mg storage property and mechanism based on the honeycomb-like structured Na3V2(PO4)3/C/G in anhydrous electrolyte. Chem. Eng. J.2019, 372, 37–45.

    CAS  Google Scholar 

  55. Zeng, J.; Yang, Y.; Lai, S. B.; Huang, J. X.; Zhang, Y. Y.; Wang, J.; Zhao, J. B. A promising high-voltage cathode material based on mesoporous Na3V2(PO4)3/C for rechargeable magnesium batteries. Chem.-Eur. J.2017, 23, 16898–16905.

    CAS  Google Scholar 

  56. Yang, Y.; Huang, J. X.; Zeng, J.; Xiong, J.; Zhao, J. B. Direct electrophoretic deposition of binder-free Co3O4/graphene sandwichlike hybrid electrode as remarkable lithium ion battery anode. ACS Appl. Mater. Interfaces2017, 9, 32801–32811.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21875198 and 21621091). The authors also would like to thank Prof. D. W. Liao for his valuable suggestions and guidance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yang or Jinbao Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Zeng, J., Hua, H. et al. NaV6O15: A promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance. Nano Res. 13, 335–343 (2020). https://doi.org/10.1007/s12274-019-2602-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2602-6

Keywords

Navigation