Skip to main content
Log in

In vivo and in situ real-time fluorescence imaging of peripheral nerves in the NIR-II window

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2021

This article has been updated

Abstract

The peripheral nervous system (PNS) is essential for performing and maintaining various motor and sensory functions. Abnormalities can lead to a series of peripheral neurological conditions, such as paraesthesia, pain, or spasms, which are debilitating and lowering the quality of life. The current guidelines for diagnosis rely predominantly on clinical symptoms resulting from PNS dysfunction, which occur already at an advanced stage. There are currently no effective methods that visually reflect the extent of peripheral neuropathy. In our study, we present a novel in vivo and in situ real-time imaging of peripheral nerves based on the second near-infrared window (NIR-II) fluorescence. In NIR-II system, PbS Qds with NIR-II fluorescence specifically bound to motor neuron-specific protein agrin, acting as image contrast. In mice model, peripheral nerves were visible as soon as after 2 h post injection. We provide evidence for the efficacy of this approach, which allows to directly demonstrate peripheral nerves, their structure, and potential damage sites and degree. Furthermore, our products were of good biocompatibility, while the neural fluorescence signal was solid, bright and stable for 4 h in vivo. Thus, overall, our results suggest that NIR-II is an effective new method for direct imaging of peripheral nerves in vivo, opening new horizons on early, improved and more precise, targeted diagnosis. A resulting more rapid installation of personalized therapy facilitates a better prognosis of clinical peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Brumback, R. A. Peripheral nervous system disorders. In Neurology and Clinical Neuroscience. Brumback, R. A., Ed.; Springer: New York, 1996; pp 78–99.

    Google Scholar 

  2. Maravilla, K. R.; Bowen, B. C. Imaging of the peripheral nervous system: Evaluation of peripheral neuropathy and plexopathy. AJNR Am. J. Neuroradiol.1998, 19, 1011–1023.

    CAS  Google Scholar 

  3. Witzel, I. E.; Jelinek, H. F.; Khalaf, K.; Lee, S.; Khandoker, A. H.; Alsafar, H. Identifying common genetic risk factors of diabetic neuropathies. Front. Endocrinol. (Lausanne) 2015, 6, 88.

    Google Scholar 

  4. Ohana, M.; Moser, T.; Moussaouï, A.; Kremer, S.; Carlier, R. Y.; Liverneaux, P.; Dietemann, J. L. Current and future imaging of the peripheral nervous system. Diagn. Interv. Imaging2014, 95, 17–26.

    CAS  Google Scholar 

  5. Rangavajla, G.; Mokarram, N.; Masoodzadehgan, N.; Pai, S. B.; Bellamkonda, R. V. Noninvasive imaging of peripheral nerves. Cells Tissues Organs2014, 200, 69–77.

    Google Scholar 

  6. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng.2017, 1, 0010.

    CAS  Google Scholar 

  7. Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater.2016, 15, 235–242.

    CAS  Google Scholar 

  8. Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol.2018, 13, 941–946.

    CAS  Google Scholar 

  9. Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater.2019, 7, 1801417.

    Google Scholar 

  10. Huang, S.; Peng, S.; Li, Y. B.; Cui, J. B.; Chen, H. L.; Wang, L. Y. Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res.2015, 8, 1932–1943.

    CAS  Google Scholar 

  11. Song, C. H.; Zhang, Y. J.; Li, C. Y.; Chen, G. C.; Kang, X. F.; Wang, Q. B. Enhanced nanodrug delivery to solid tumors based on a tumor vasculature-targeted strategy. Adv. Funct. Mater.2016, 26, 4192–4200.

    CAS  Google Scholar 

  12. Sun, Y.; Ding, M. M.; Zeng, X. D.; Xiao, Y. L.; Wu, H. P.; Zhou, H.; Ding, B. B.; Qu, C. R.; Hou, W.; Er-bu, A. G. A. et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem. Sci.2017, 8, 3489–3493.

    CAS  Google Scholar 

  13. Zhu, S. J.; Yang, Q. L.; Antaris, A. L.; Yue, J. Y.; Ma, Z. R.; Wang, H. S.; Huang, W.; Wan, H.; Wang, J.; Diao, S. et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc. Natl. Acad. Sci. USA2017, 114, 962–967.

    CAS  Google Scholar 

  14. Yang, Q. L.; Ma, Z. R.; Wang, H. S.; Zhou, B.; Zhu, S. J.; Zhong, Y. T.; Wang, J. Y.; Wan, H.; Antaris, A.; Ma, R. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater.2017, 29, 1605497.

    Google Scholar 

  15. Chen, J.; Kong, Y. F.; Wo, Y.; Fang, H. W.; Li, Y. X.; Zhang, T.; Dong, Y.; Ge, Y. S.; Wu, Z. Y.; Zhou, D. et al. Facile synthesis of β-lactoglobulin capped Ag2S quantum dots for in vivo imaging in the second near-infrared biological window. J. Mater. Chem. B2016, 4, 6271–6278.

    CAS  Google Scholar 

  16. Chen, J.; Kong, Y. F.; Wang, W.; Fang, H. W.; Wo, Y.; Zhou, D. J.; Wu, Z. Y.; Li, Y. X.; Chen, S. Y. Direct water-phase synthesis of lead sulfide quantum dots encapsulated by β-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chem. Commun.2016, 52, 4025–4028.

    CAS  Google Scholar 

  17. Chen, J.; Kong, Y. F.; Feng, S. Q.; Chen, C.; Wo, Y.; Wang, W.; Dong, Y.; Wu, Z. Y.; Li, Y. X.; Chen, S. Y. Recycled synthesis of whey-protein-capped lead sulfide quantum dots as the second near-infrared reporter for bioimaging application. ACS Sustainable Chem. Eng.2016, 4, 2932–2938.

    CAS  Google Scholar 

  18. Xiao, K.; Wang, K.; Qin, W. J.; Hou, Y. F.; Lu, W. T.; Xu, H.; Wo, Y.; Cui, D. X. Use of quantum dot beads-labeled monoclonal antibody to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and carcinoembryonic antigen. Talanta2017, 164, 463–469.

    CAS  Google Scholar 

  19. Zhu, S. J.; Yung, B. C.; Chandra, S.; Niu, G.; Antaris, A. L.; Chen, X. Y. Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission. Theranostics2018, 8, 4141–4151.

    CAS  Google Scholar 

  20. Feng, Z.; Yu, X. M.; Jiang, M. X.; Zhu, L.; Zhang, Y.; Yang, W.; Xi, W.; Li, G. H.; Qian, J. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics2019, 9, 5706–5719.

    CAS  Google Scholar 

  21. Chen, G. C.; Tian, F.; Zhang, Y.; Zhang, Y. J.; Li, C. Y.; Wang, Q. B. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv. Funct. Mater.2014, 24, 2481–2488.

    CAS  Google Scholar 

  22. Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc.2010, 132, 1470–1471.

    CAS  Google Scholar 

  23. Li, C. Y.; Zhang, Y. J.; Chen, G. C.; Hu, F.; Zhao, K.; Wang, Q. B. Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv. Mater.2017, 29, 1605754.

    Google Scholar 

  24. Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials2014, 35, 393–400.

    CAS  Google Scholar 

  25. Kong, Y. F.; Chen, J.; Fang, H. W.; Heath, G.; Wo, Y.; Wang, W. L.; Li, Y. X.; Guo, Y.; Evans, S. D.; Chen, S. Y. et al. Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem. Mater.2016, 28, 3041–3050.

    CAS  Google Scholar 

  26. Feng, S. Q.; Chen, J.; Yan, W.; Li, Y. X.; Chen, S. Y.; Zhang, Y. X.; Zhang, W. J. Real-time and long-time in vivo imaging in the shortwave infrared window of perforator vessels for more precise evaluation of flap perfusion. Biomaterials2016, 103, 256–264.

    CAS  Google Scholar 

  27. Sanes, J. R.; Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci.2001, 2, 791–805.

    CAS  Google Scholar 

  28. Smith, M. A.; Yao, Y. M.; Reist, N. E.; Magill, C.; Wallace, B. G; McMahan, U. J. Identification of agrin in electric organ extracts and localization of agrin-like molecules in muscle and central nervous system. J. Exp. Biol.1987, 132, 223–230.

    CAS  Google Scholar 

  29. Nitkin, R. M.; Smith, M. A.; Magill, C.; Fallon, J. R.; Yao, Y. M.; Wallace, B. G.; McMahan, U. J. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol.1987, 105, 2471–2478.

    CAS  Google Scholar 

  30. Magill-Solc, C.; McMahan, U. J. Motor neurons contain agrin-like molecules. J. Cell Biol.1988, 107, 1825–1833.

    CAS  Google Scholar 

  31. Patthy, L.; Nikolics, K. Functions of agrin and agrin-related proteins. Trends Neurosci.1993, 16, 76–81.

    CAS  Google Scholar 

  32. Berzin, T. M.; Zipser, B. D.; Rafii, M. S.; Kuo-Leblanc, V.; Yancopouloš, G. D.; Glass, D. J.; Fallon, J. R.; Stopa, E. G. Agrin and microvascular damage in Alzheimer’s disease. Neurobiol. Aging2000, 21, 349–355.

    CAS  Google Scholar 

  33. Godfrey, E. W.; Nitkin, R. M.; Wallace, B. G.; Rubin, L. L.; McMahan, U. J. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J. Cell Biol.1984, 99, 615–627.

    CAS  Google Scholar 

  34. Werle, M. J.; Sojka, A. M. Anti-agrin staining is absent at abandoned synaptic sites of frog neuromuscular junctions. J. Neurobiol.1996, 30, 293–302.

    CAS  Google Scholar 

  35. Yang, J. F.; Cao, G.; Koirala, S.; Reddy, L. V.; Ko, C. P. Schwann cells express active Agrin and enhance aggregation of acetylcholine receptors on muscle fibers. J. Neurosci.2001, 21, 9572–9584.

    CAS  Google Scholar 

  36. Xi, Y.; Yang, J. J.; Ge, Y. S.; Zhao, S. L.; Wang, J. G.; Li, Y. X.; Hao, Y. F.; Chen, J.; Zhu, Y. C. One-pot synthesis of water-soluble near-infrared fluorescence RNase A capped CuInS2 quantum dots for in vivo imaging. RSC Adv.2017, 7, 50949–50954.

    CAS  Google Scholar 

  37. Xu, S. Y.; Cui, J. B.; Wang, L. Y. Recent developments of low-toxicity NIR II quantum dots for sensing and bioimaging. TrAC Trends Anal. Chem.2016, 80, 149–155.

    CAS  Google Scholar 

  38. Zhao, J. Y.; Zhong, D.; Zhou, S. B. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B2018, 6, 349–365.

    CAS  Google Scholar 

  39. Wang, S. F.; Fan, Y.; Li, D. D.; Sun, C. X.; Lei, Z. H.; Lu, L. F.; Wang, T.; Zhang, F. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun.2019, 10, 1058.

    Google Scholar 

  40. Wang, S. F.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D. D.; Zhang, F. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett.2019, 19, 2418–2427.

    CAS  Google Scholar 

  41. Mason, L. H.; Harp, J. P.; Han, D. Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Res. Int.2014, 2014, 840547.

    Google Scholar 

  42. Lanphear, B. P.; Dietrich, K.; Auinger, P.; Cox, C. Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep.2000, 115, 521–529.

    CAS  Google Scholar 

  43. Needleman, H. L.; Schell, A.; Bellinger, D.; Leviton, A.; Allred, E. N. The long-term effects of exposure to low doses of lead in childhood — An 11-year follow-up report. N. Engl. J. Med.1990, 322, 83–88.

    CAS  Google Scholar 

  44. Qin, W. J.; Wang, K.; Xiao, K.; Hou, Y. F.; Lu, W. T.; Xu, H.; Wo, Y.; Feng, S. Q.; Cui, D. X. Carcinoembryonic antigen detection with “Handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens. Bioelectron.2017, 90, 508–515.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 81672247, 81772339, 8181101445, 81811530750, and 81811530389), Shanghai Rising-Star Project (No. 18QB1400500), The Key Clinical Medicine Center of Shanghai (No. 2017ZZ01006), Sanming Project of Medicine in Shenzhen (No. SZSM201612078), The Introduction Project of Clinical Medicine Expert Team for Suzhou (No. SZYJTD201714), and Development Project of Shanghai Peak Disciplines-Integrative Medicine (No. 20180101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuefeng Hao, Jun Chen or Yan Wo.

Ethics declarations

The authors has no conflict of interest.

Electronic Supplementary Material

Supplementary material, approximately 42.1 MB.

Supplementary material, approximately 31.7 MB.

In vivo and in situ real-time fluorescence imaging of peripheral nerves in the NIR-II window

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Yang, Y., Zhang, J. et al. In vivo and in situ real-time fluorescence imaging of peripheral nerves in the NIR-II window. Nano Res. 12, 3059–3068 (2019). https://doi.org/10.1007/s12274-019-2552-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2552-z

Keywords

Navigation