Skip to main content
Log in

Development of a homogenous assay based on fluorescent imprinted nanoparticles for analysis of nitroaromatic compounds

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein we describe the development of a homogeneous assay for the detection of 4-nitroaniline (4-NA) and 2,4-dinitroaniline (2,4-diNA). This assay relies on fluorescent molecularly imprinted nanoparticles (nanoMIPs) which, upon interaction with the target analytes, generate a reduction in fluorescence emission intensity (quenching). This is due to a responsive fluorescent monomer (N-2-propenyl-(5-dimethylamino)-1-naphthalene sulphonamide) employed in the manufacture of the nanoMIPs which, by virtue of the imprinting process, is capable of selective interaction with the target analyte, thus giving rise to a quenching effect. Selectivity experiments showed excellent recognition properties toward the target molecule. Under optimal conditions, the fluorescence intensity of these nanoMIPs decreased as the concentration of the imprinted analyte increased from 10 nM to 2.71 μM. A linear relation between the negative logarithm of 4-NA or 2,4-diNA concentrations and the fluorescence intensity for both nanosystems was found (R2 = 0.991 and R2 = 0.9895), with excellent sensitivity (limit of detection (LOD) = 7 and 6 nM, respectively). Furthermore, both nanosystems have been successfully applied for detection of 4-NA or 2,4-diNA in tap water, with recoveries between 90% to 100.6% and 92% to 100.3%, respectively. Thanks to the versatility of the imprinting process, this nanosystem holds the potential for further development of several optical sensors for many other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, M. H.; De Vivo, B.; Lu, W. J.; Muniz-Miranda, M. Sensitive surface-enhanced Raman scattering (SERS) detection of nitroaromatic pollutants in water. Appl. Spectrosc.2014, 68, 784–788.

    Article  CAS  Google Scholar 

  2. Yazdi, A. S.; Mofazzeli, F.; Es’haghi, Z. Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography. J. Chromatogr. A2009, 1216, 5086–5091.

    Article  CAS  Google Scholar 

  3. Fan, Y. C.; Hu, Z. L.; Chen, M. L.; Tu, C. S.; Zhu, Y. Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples. Chin. Chem. Lett.2008, 19, 985–987.

    Article  CAS  Google Scholar 

  4. Wu, T.; Wang, H. T.; Shen, B.; Du, Y. P.; Wang, X.; Wang, Z. P.; Zhang, C. J.; Miu, W. B. Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy. Chin. Chem. Lett.2016, 27, 745–748.

    Article  CAS  Google Scholar 

  5. Guo, X. F.; Lv, J.; Zhang, W. D.; Wang, Q. J.; He, P. G.; Fang, Y. Z. Separation and determination of nitroaniline isomers by capillary zone electrophoresis with amperometric detection. Talanta2006, 69, 121–125.

    Article  CAS  Google Scholar 

  6. Dimou, A. D.; Sakkas, V. A.; Albanis, T. A. Photodegradation of trifluralin in natural waters and soils: Degradation kinetics and influence of organic matter. Int. J. Environ. Anal. Chem.2004, 84, 173–182.

    Article  CAS  Google Scholar 

  7. Busquets, R.; Jonsson, J. Å.; Frandsen, H.; Puignou, L.; Galceran, M. T.; Skog, K. Hollow fibre-supported liquid membrane extraction and LC-MS/MS detection for the analysis of heterocyclic amines in urine samples. Mol. Nutr. Food Res.2009, 53, 1496–1504.

    Article  CAS  Google Scholar 

  8. Mishra, S.; Singh, V.; Jain, A.; Verma, K. K. Simultaneous determination of ammonia, aliphatic amines, aromatic amines and phenols at ώg L-1 levels in environmental waters by solid-phase extraction of their benzoyl derivatives and gas chromatography-mass spectrometry. Analyst2001, 126, 1663–1668.

    Article  CAS  Google Scholar 

  9. Tong, C. L.; Guo, Y.; Liu, W. P. Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chemosphere2010, 81, 430–435.

    Article  CAS  Google Scholar 

  10. Yao, L. F.; He, H. B.; Feng, Y. Q.; Da, S. L. HPLC separation of positional isomers on a dodecylamine-N, N-dimethylenephosphonic acid modified zirconia stationary phase. Talanta2004, 64, 244–251.

    Article  CAS  Google Scholar 

  11. Wu, P. Y.; Liu, Y. H.; Li, Y.; Jiang, M.; Li, X. L.; Shi, Y. H.; Wang, J. A cadmium(II)-based metal-organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A2016, 4, 16349–16355.

    Article  CAS  Google Scholar 

  12. Tominaga, Y.; Kubo, T.; Yasuda, K.; Kato, K.; Hosoya, K. Development of molecularly imprinted porous polymers for selective adsorption of gaseous compounds. Microporous Mesoporous Mater.2012, 156, 161–165.

    Article  CAS  Google Scholar 

  13. Tse Sum Bui, B.; Haupt, K. Molecularly imprinted polymers: Synthetic receptors in bioanalysis. Anal. Bioanal. Chem.2010, 398, 2481–2492.

    Article  Google Scholar 

  14. Jiang, S. Y.; Peng, Y.; Ning, B. A.; Bai, J. L.; Liu, Y. Y.; Zhang, N.; Gao, Z. X. Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine. Sens. Actuators B: Chem.2015, 221, 15–21.

    Article  CAS  Google Scholar 

  15. Donato, L.; Algieri, C.; Rizzi, A.; Giorno, L. Kinetic study of tyrosinase immobilized on polymeric membrane. J. Membr. Sci.2014, 454, 346–350.

    Article  CAS  Google Scholar 

  16. Xu, X.; Duhoranimana, E.; Zhang, X. M. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples. Talanta2017, 163, 31–38.

    Article  CAS  Google Scholar 

  17. Moczko, E.; Poma, A.; Guerreiro, A.; Perez De Vargas Sansalvador, I.; Caygill, S.; Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. Surface-modified multifunctional MIP nanoparticles. Nanoscale2013, 5, 3733–3741.

    Article  CAS  Google Scholar 

  18. Wackerlig, J.; Lieberzeit, P. A. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B: Chem.2015, 207, 144–157.

    Article  CAS  Google Scholar 

  19. Canfarotta, F.; Waters, A.; Sadler, R.; McGill, P.; Guerreiro, A.; Papkovsky, D.; Haupt, K.; Piletsky, S. Biocompatibility and internalization of molecularly imprinted nanoparticles. Nano Res.2016, 9, 3463–3477.

    Article  CAS  Google Scholar 

  20. Canfarotta, F.; Czulak, J.; Betlem, K.; Sachdeva, A.; Eersels, K.; Van Grinsven, B.; Cleij, T. J.; Peeters, M. A novel thermal detection method based on molecularly imprinted nanoparticles as recognition elements. Nanoscale2018, 10, 2081–2089.

    Article  CAS  Google Scholar 

  21. Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R. J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron.2014, 58, 138–144.

    Article  CAS  Google Scholar 

  22. Canfarotta, F.; Czulak, J.; Guerreiro, A.; Cruz, A. G.; Piletsky, S.; Bergdahl, G. E.; Hedström, M.; Mattiasson, B. A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements. Biosens. Bioelectron.2018, 120, 108–114.

    Article  CAS  Google Scholar 

  23. Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J. S.; Piletska, E. V.; De Vargas Sansalvador, I. M. P.; Whitcombe, M. J.; Piletsky, S. A. Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA—Development of a novel assay for vancomycin. Anal. Chem.2013, 85, 8462–8468.

    Article  CAS  Google Scholar 

  24. Smolinska-Kempisty, K.; Guerreiro, A.; Canfarotta, F.; Cáceres, C.; Whitcombe, M. J.; Piletsky, S. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci. Rep.2016, 6, 37638.

    Article  CAS  Google Scholar 

  25. Poma, A.; Guerreiro, A.; Whitcombe, M. J.; Piletska, E. V.; Turner, A. P. F.; Piletsky, S. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template—“Plastic antibodies”. Adv. Funct. Mater.2013, 23, 2821–2827.

    Article  CAS  Google Scholar 

  26. Rouhani, S.; Nahavandifard, F. Molecular imprinting-based fluorescent optosensor using a polymerizable 1,8-naphthalimide dye as a florescence functional monomer. Sens. Actuators B: Chem.2014, 197, 185–192.

    Article  CAS  Google Scholar 

  27. Lu, X.; Yang, Y. W.; Zeng, Y. B.; Li, L.; Wu, X. H. Rapid and reliable determination of p-nitroaniline in wastewater by molecularly imprinted fluorescent polymeric ionic liquid microspheres. Biosens. Bioelectron.2018, 99, 47–55.

    Article  CAS  Google Scholar 

  28. Chen, Z. H.; Álvarez-Pérez, M.; Navarro-Villoslada, F.; Moreno-Bondi, M. C.; Orellana, G. Fluorescent sensing of “quat” herbicides with a multifunctional pyrene-labeled monomer and molecular imprinting. Sens. Actuators B: Chem.2014, 191, 137–142.

    Article  CAS  Google Scholar 

  29. Inoue, Y.; Kuwahara, A.; Ohmori, K.; Sunayama, H.; Ooya, T.; Takeuchi, T. Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline. Biosens. Bioelectron.2013, 48, 113–119.

    Article  CAS  Google Scholar 

  30. Cheng, Y.; Jiang, P.; Lin, S.; Li, Y. N.; Dong, X. C. An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sens. Actuators B: Chem.2014, 193, 838–843.

    Article  CAS  Google Scholar 

  31. Wang, W.; Gao, S. H.; Wang, B. H. Building fluorescent sensors by template polymerization: The preparation of a fluorescent sensor for D-fructose. Org. Lett.1999, 1, 1209–1212.

    Article  CAS  Google Scholar 

  32. Gao, S. H.; Wang, W.; Wang, B. H. Molecularly imprinted polymers as recognition elements in optical sensors. In Molecularly Imprinted Materials: Science and Technology. Yan, M. D.; Ramstrom, O., Eds.; Marcel Dekker: New York, 2005; pp 701–726.

    Google Scholar 

  33. Turner, N. W.; Holdsworth, C. I.; McCluskey, A.; Bowyer, M. C. N-2-propenyl-(5-dimethylamino)-1-naphthalene sulfonamide, a novel fluorescent monomer for the molecularly imprinted polymer-based detection of 2,4-dinitrotoluene in the gas phase. Aust. J. Chem.2012, 65, 1405–1412.

    Article  CAS  Google Scholar 

  34. Caddick, S.; Wilden, J. D.; Judd, D. B. Direct synthesis of sulfonamides and activated sulfonate esters from sulfonic acids. J. Am. Chem. Soc.2004, 126, 1024–1025.

    Article  CAS  Google Scholar 

  35. Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc.2016, 11, 443–455.

    Article  CAS  Google Scholar 

  36. Bolchi, C.; Valoti, E.; Straniero, V.; Ruggeri, P.; Pallavicini, M. From 2-aminomethyl-1,4-benzodioxane enantiomers to unichiral 2-cyano- and 2-carbonyl-substituted benzodioxanes via dichloroamine. J. Org. Chem.2014, 79, 6732–6737.

    Article  CAS  Google Scholar 

  37. Sun, X. C.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev.2015, 44, 8019–8061.

    Article  CAS  Google Scholar 

  38. Bagheri, M.; Masoomi, M. Y.; Morsali, A. Highly sensitive and selective ratiometric fluorescent metal-organic framework sensor to nitroaniline in presence of nitroaromatic compounds and VOCs. Sens. Actuators B: Chem.2017, 243, 353–360.

    Article  CAS  Google Scholar 

  39. Chen, N.; Ding, P.; Shi, Y.; Jin, T. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem.2017, 89, 5072–5078.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Asma Elbelazi would like to express his gratitude to the Ministry of Higher Education and Scientific Research of Libya and Libyan Cultural Attaché in UK for the financial contribution to her PhD course.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Canfarotta.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbelazi, A., Canfarotta, F., Czulak, J. et al. Development of a homogenous assay based on fluorescent imprinted nanoparticles for analysis of nitroaromatic compounds. Nano Res. 12, 3044–3050 (2019). https://doi.org/10.1007/s12274-019-2550-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2550-1

Keywords

Navigation