Skip to main content
Log in

A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The growth of Li dendrites and the instability of the solid electrolyte interphase (SEI) layer during plating/stripping has hindered the practical application of high-energy-density batteries based on a lithium metal anode. Building a stable interfacial layer is effective in preventing lithium corrosion by the electrolyte and controlling the deposition of lithium metal. Here, we present a robust polydopamine-Cu ion (PDA-Cu2+) coating layer formed by the aggregation of nanoparticles and Cu ions, which can be obtained by a subtle immersion strategy. We demonstrate that the PDA-Cu2+ protective layer, with a unique structure comprising nanoparticles, can regulate and guide Li metal deposition, and together with Cu ions, forms a lubricating surface to facilitate uniform Li ion diffusion and induce stable SEI layer formation. Li anodes with this PDA-Cu2+ layer modification ultimately achieve higher Coulombic efficiencies, which are consistently stable for over 650 cycles at 0.5 mA·cm−2 without Li dendrites. The introduced PDA-Cu2+ coating can adhere to any material of any shape; additionally, the operation can be realized on a large scale because of its simplicity. These merits provide a promising approach for developing stable and safe lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci.2014, 7, 513–537.

    CAS  Google Scholar 

  2. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater.2012, 11, 19–29.

    CAS  Google Scholar 

  3. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol.2017, 12, 194–206.

    CAS  Google Scholar 

  4. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev.2017, 117, 10403–10473.

    CAS  Google Scholar 

  5. Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater.2015, 5, 1402273.

    Google Scholar 

  6. Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res.2017, 10, 4003–4026.

    CAS  Google Scholar 

  7. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc.1979, 126, 2047–2051.

    CAS  Google Scholar 

  8. Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res.2017, 10, 4027–4054.

    CAS  Google Scholar 

  9. Li, Y. S.; Leung, K.; Qi, Y. Computational exploration of the Li-electrode | electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res.2016, 49, 2363–2370.

    CAS  Google Scholar 

  10. Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy2016, 1, 16114.

    CAS  Google Scholar 

  11. Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G., Jr.; Li, H.; Harris, S. J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc.2012, 134, 15476–15487.

    CAS  Google Scholar 

  12. Lin, D. C.; Liu, Y. Y.; Li, Y. B.; Li, Y. Z.; Pei, A.; Xie, J.; Huang, W.; Cui, Y. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem.2019, 11, 382–389.

    CAS  Google Scholar 

  13. Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater.2016, 28, 2155–2162.

    CAS  Google Scholar 

  14. Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun.2018, 9, 3729.

    Google Scholar 

  15. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater.2016, 28, 1853–1858.

    CAS  Google Scholar 

  16. Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater.2017, 16, 572–579.

    CAS  Google Scholar 

  17. Hu, J. L.; Tian, J.; Li, C. L. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces2017, 9, 11615–11625.

    CAS  Google Scholar 

  18. Huang, S. B.; Zhang, W. F.; Ming, H.; Cao, G. P.; Fan, L. Z.; Zhang, H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett.2019, 19, 1832–1837.

    CAS  Google Scholar 

  19. Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. A. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc.2018, 140, 11735–11744.

    CAS  Google Scholar 

  20. Li, S. Y.; Fan, L.; Lu, Y. Y. Rational design of robust-flexible protective layer for safe lithium metal battery. Energy Storage Mater.2019, 18, 205–212.

    CAS  Google Scholar 

  21. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Scordilis Kelley, C.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc.2009, 156, A694–A702.

    CAS  Google Scholar 

  22. Shiraishi, S.; Kanamura, K.; Takehara, Z. I. Influence of initial surface condition of lithium metal anodes on surface modification with HF. J. Appl. Electrochem.1999, 29, 867–879.

    Google Scholar 

  23. Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett.2014, 14, 6889–6896.

    CAS  Google Scholar 

  24. Arnbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta2002, 47, 1423–1439.

    Google Scholar 

  25. Wu, F.; Chen, N.; Chen, R. J.; Zhu, Q. Z.; Qian, J.; Li, L. “Liquid-in-solid” and “solid-in-liquid” electrolytes with high rate capacity and long cycling life for lithium-ion batteries. Chem. Mater.2016, 28, 848–856.

    CAS  Google Scholar 

  26. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc.2013, 135, 4450–4456.

    CAS  Google Scholar 

  27. Fan, L.; Zhuang, H. L.; Gao, L. N.; Lu, Y. Y.; Archer, L. A. Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A2017, 5, 3483–3492.

    CAS  Google Scholar 

  28. Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater.2017, 29, 1605531.

    Google Scholar 

  29. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol.2014, 9, 618–623.

    CAS  Google Scholar 

  30. Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res.2017, 10, 4256–4265.

    CAS  Google Scholar 

  31. Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater.2017, 29, 1603755.

    Google Scholar 

  32. Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. A. et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc.2017, 139, 4815–4820.

    CAS  Google Scholar 

  33. Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater.2018, 28, 1705838.

    Google Scholar 

  34. Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Columnar lithium metal anodes. Angew. Chem.2017, 129, 14395–14399.

    Google Scholar 

  35. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science2007, 318, 426–430.

    CAS  Google Scholar 

  36. Robinson, D. L.; Hermans, A.; Seipel, A. T.; Wightman, R. M. Monitoring rapid chemical communication in the brain. Chem. Rev.2008, 108, 2554–2584.

    CAS  Google Scholar 

  37. Kang, S. M.; Rho, J.; Choi, I. S.; Messersmith, P. B.; Lee, H. Norepinephrine: Material-independent, multifunctional surface modification reagent. J. Am. Chem. Soc.2009, 131, 13224–13225.

    CAS  Google Scholar 

  38. Waite, J. H.; Qin, X. X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry2001, 40, 2887–2893.

    CAS  Google Scholar 

  39. Wei, Q.; Zhang, F. L.; Li, J.; Li, B. J.; Zhao, C. S. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem.2010, 1, 1430–1433.

    CAS  Google Scholar 

  40. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev.2014, 114, 5057–5115.

    CAS  Google Scholar 

  41. Ai, K. L.; Liu, Y. L.; Ruan, C. P.; Lu, L. H.; Lu, G. Q. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater.2013, 25, 998–1003.

    CAS  Google Scholar 

  42. Kang, S. M.; Ryou, M. H.; Choi, J. W.; Lee, H. Mussel- and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater.2012, 24, 3481–3485.

    CAS  Google Scholar 

  43. Zhang, C.; Li, H. N.; Du, Y.; Ma, M. Q.; Xu, Z. K. CuSO4/H2O2-triggered polydopamine/poly(sulfobetaine methacrylate) coatings for antifouling membrane surfaces. Langmuir2017, 33, 1210–1216.

    CAS  Google Scholar 

  44. Ouyang, R. Z.; Lei, J. P.; Ju, H. X. Surface molecularly imprinted nanowire for protein specific recognition. Chem. Commun.2008, 5761–5763.

  45. Zheng, W. C.; Fan, H. L.; Wang, L.; Jin, Z. X. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir2015, 31, 11671–11677.

    CAS  Google Scholar 

  46. Luo, R. F.; Tang, L. L.; Zhong, S.; Yang, Z. L.; Wang, J.; Weng, Y. J.; Tu, Q. F.; Jiang, C. X.; Huang, N. In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Appl. Mater. Interfaces2013, 5, 1704–1714.

    CAS  Google Scholar 

  47. Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater.2012, 22, 4711–4717.

    CAS  Google Scholar 

  48. Jeon, Y. J.; Kang, S. M. Chemically stable poly(norepinephrine) coatings on solid substrates by post-oxidation. Polym. Degrad. Stab.2013, 98, 1271–1273.

    CAS  Google Scholar 

  49. Chang, C. C.; Kolewe, K. W.; Li, Y. Y.; Kosif, I.; Freeman, B. D.; Carter, K. R.; Schiffman, J. D.; Emrick, T. Underwater superoleophobic surfaces prepared from polymer zwitterion/dopamine composite coatings. Adv. Mater. Interfaces2016, 3, 1500521.

    Google Scholar 

  50. Kim, H. W.; McCloskey, B. D.; Choi, T. H.; Lee, C.; Kim, M. J.; Freeman, B. D.; Park, H. B. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Appl. Mater. Interfaces2013, 5, 233–238.

    Google Scholar 

  51. Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett.2017, 17, 1132–1139.

    CAS  Google Scholar 

  52. Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed.2017, 56, 7764–7768.

    CAS  Google Scholar 

  53. Meng, Q. Q.; Deng, B.; Zhang, H. M.; Wang, B. Y.; Zhang, W. F.; Wen, Y. H.; Ming, H.; Zhu, X. Y.; Guan, Y. P.; Xiang, Y. et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater.2019, 16, 419–425.

    Google Scholar 

  54. Eshkenazi, V.; Peled, E.; Burstein, L.; Golodnitsky, D. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics2004, 170, 83–91.

    CAS  Google Scholar 

  55. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci.2016, 3, 1500213.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21875284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zhang or Yuepeng Guan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Zhang, H., Liu, Y. et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Res. 12, 2919–2924 (2019). https://doi.org/10.1007/s12274-019-2519-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2519-0

Keywords

Navigation