Skip to main content
Log in

Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4, CN) exhibits inefficient charge separation, deficient CO2 adsorption and activation sites, and sluggish surface reaction kinetics, which have been recognized as the main barriers to its application in CO2 photocatalytic reduction. In this work, carbon quantum dot (CQD) decoration and oxygen atom doping were applied to CN by a facile one-step hydrothermal method. The incorporated CQDs not only facilitate charge transfer and separation, but also provide alternative CO2 adsorption and activation sites. Further, the oxygen-atom-doped CN (OCN), in which oxygen doping is accompanied by the formation of nitrogen defects, proves to be a sustainable H+ provider by facilitating the water dissociation and oxidation half-reactions. Because of the synergistic effect of the hybridized binary CQDs/OCN addressing the three challenging issues of the CN based materials, the performance of CO2 photocatalytic conversion to CH4 over CQDs/OCN-x (x represents the volume ratio of laboratory-used H2O2 (30 wt.%) in the mixed solution) is dramatically improved by 11 times at least. The hybrid photocatalyst design and mechanism proposed in this work could inspire more rational design and fabrication of effective photocatalysts for CO2 photocatalytic conversion with a high CH4 selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci.2012, 5, 6732–6743.

    CAS  Google Scholar 

  2. Xie, S. J.; Zhang, Q. H.; Liu, G. D.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun.2016, 52, 35–59.

    CAS  Google Scholar 

  3. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci.2016, 9, 2177–2196.

    CAS  Google Scholar 

  4. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature1979, 277, 637–638.

    CAS  Google Scholar 

  5. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed.2013, 52, 7372–7408.

    CAS  Google Scholar 

  6. Zhou, H.; Yan, R. Y.; Zhang, D.; Fan, T. X. Challenges and perspectives in designing artificial photosynthetic systems. Chem.-Eur. J.2016, 22, 9870–9885.

    CAS  Google Scholar 

  7. Lu, L.; Wang, B.; Wang, S. M.; Shi, Z.; Yan, S. C.; Zou, Z. G. La2O3-modified LaTiO2N photocatalyst with spatially separated active sites achieving enhanced CO2 reduction. Adv. Funct. Mater.2017, 27, 1702447.

    Google Scholar 

  8. White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev.2015, 115, 12888–12935.

    CAS  Google Scholar 

  9. Sun, Z. X.; Wang, S. C.; Li, Q.; Lyu, M. Q.; Butburee, T.; Luo, B.; Wang, H. Q.; Fischer, J. M. T. A.; Zhang, C.; Wu, Z. B. et al. Enriching CO2 activation sites on graphitic carbon nitride with simultaneous introduction of electron-transfer promoters for superior photocatalytic CO2-to-fuel conversion. Adv. Sustain. Syst.2017, 1, 1700003.

    Google Scholar 

  10. Li, M. L.; Zhang, L. X.; Wu, M. Y.; Du, Y. Y.; Fan, X. Q.; Wang, M.; Zhang, L. L.; Kong, Q. L.; Shi, J. L. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy2016, 19, 145–155.

    CAS  Google Scholar 

  11. Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater.2017, 29, 1601694.

    Google Scholar 

  12. Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev.2014, 43, 5234–5244.

    CAS  Google Scholar 

  13. Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces2013, 5, 11392–11401.

    CAS  Google Scholar 

  14. Zhang, H.; Zhao, L. X.; Geng, F. L.; Guo, L. H.; Wan, B.; Yang, Y. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Appl. Catal. B: Environ.2016, 180, 656–662.

    CAS  Google Scholar 

  15. Low, J. X.; Cheng, B.; Yu, J. G.; Jaroniec, M. Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels. Energy Stor. Mater.2016, 3, 24–35.

    Google Scholar 

  16. Huang, Y.; Liang, Y. L.; Rao, Y. F.; Zhu, D. D.; Cao, J. J.; Shen, Z. X.; Ho, W; Lee, S. C. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: Characterization, biocompatibility, and mechanisms for NO removal. Environ. Sci. Technol.2017, 51, 2924–2933.

    CAS  Google Scholar 

  17. Chen, J. W.; Shi, J. W.; Wang, X.; Cui, H. J.; Fu, M. L. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chin. J. Catal.2013, 34, 621–640.

    CAS  Google Scholar 

  18. Yu, J. G.; Jin, J.; Cheng, B.; Jaroniec, M. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A2014, 2, 3407–3416.

    CAS  Google Scholar 

  19. Liu, G.; Niu, P.; Sun, C. H.; Smith, S.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc.2010, 132, 11642–11648.

    CAS  Google Scholar 

  20. Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces2015, 7, 16850–16856.

    CAS  Google Scholar 

  21. Zeng, Y. X.; Liu, X.; Liu, C. B.; Wang, L. L.; Xia, Y. C.; Zhang, S. Q.; Luo, S. L.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B: Environ.2018, 224, 1–9.

    CAS  Google Scholar 

  22. Fang, W. J.; Liu, J. Y.; Yu, L.; Jiang, Z.; Shangguan, W. F. Novel (Na, O) co-doped g-C3N4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution. Appl. Catal. B: Environ.2017, 209, 631–636.

    CAS  Google Scholar 

  23. Jiang, Y. B.; Sun, Z. Z.; Tang, C.; Zhou, Y. X.; Zeng, L.; Huang, L. M. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Appl. Catal. B: Environ.2019, 240, 30–38.

    Google Scholar 

  24. Wang, X. F.; Cheng, J. J.; Yu, H. G.; Yu, J. G. A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2-evolution performance. Dalton Trans.2017, 46, 6417–6424.

    CAS  Google Scholar 

  25. Li, Q.; Sun, Z. X.; Wang, H. Q.; Wu, Z. B. Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured Bi-decorated g-C3N4 nanohybrid under visible-light irradiation. J. CO 2Util.2018, 28, 126–136.

    CAS  Google Scholar 

  26. Wang, H. Q.; Sun, Z. X.; Li, Q.; Tang, Q. J.; Wu, Z. B. Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200.420 nm UV light. J. CO 2Util.2016, 14, 143–151.

    CAS  Google Scholar 

  27. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem.2008, 18, 4893–4908.

    CAS  Google Scholar 

  28. Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater.2015, 27, 4572–4577.

    CAS  Google Scholar 

  29. Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small2017, 13, 1603938.

    Google Scholar 

  30. Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Wang, L. Z.; Liu, G.; Cheng, H. M. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater.2016, 28, 6471–6477.

    CAS  Google Scholar 

  31. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater.2012, 22, 4763–4770.

    CAS  Google Scholar 

  32. Huang, Z. F.; Song, J. J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. J.; Mi, W. B.; Zhang, X. W.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy2015, 12, 646–656.

    CAS  Google Scholar 

  33. Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem.2012, 22, 1265–1269.

    CAS  Google Scholar 

  34. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as highperformance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed.2014, 53, 7281–7285.

    CAS  Google Scholar 

  35. Hu, Y. P.; Yang, J.; Jia, L.; Yu, J. S. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon2015, 93, 999–1007.

    CAS  Google Scholar 

  36. Zhao, L. X.; Di, F.; Wang, D. B.; Guo, L. H.; Yang, Y.; Wan, B.; Zhang, H. Chemiluminescence of carbon dots under strong alkaline solutions: A novel insight into carbon dot optical properties. Nanoscale2013, 5, 2655–2658.

    CAS  Google Scholar 

  37. Hu, S. L.; Tian, R. X.; Wu, L. L.; Zhao, Q.; Yang, J. L.; Liu, J.; Cao, S. R. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity. Chem..Asian J.2013, 8, 1035–1041.

    CAS  Google Scholar 

  38. Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visiblelight photoreactivity. Chem. Commun.2012, 48, 12017–12019.

    CAS  Google Scholar 

  39. She, X. J.; Liu, L.; Ji, H. Y.; Mo, Z.; Li, Y. P.; Huang, L. Y.; Du, D. L.; Xu, H.; Li, H. M. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B: Environ.2016, 187, 144–153.

    CAS  Google Scholar 

  40. Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem.2011, 21, 14398–14401.

    CAS  Google Scholar 

  41. Qiu, P. X.; Xu, C. M.; Chen, H.; Jiang, F.; Wang, X.; Lu, R. F.; Zhang, X. R. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. Appl. Catal. B: Environ.2017, 206, 319–327.

    CAS  Google Scholar 

  42. Bu, Y. Y.; Chen, Z. Y. Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim. Acta2014, 144, 42–49.

    CAS  Google Scholar 

  43. Li, H. J.; Sun, B. W.; Sui, L.; Qian, D. J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys.2015, 17, 3309–3315.

    CAS  Google Scholar 

  44. Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon2009, 47, 145–152.

    CAS  Google Scholar 

  45. Wang, X. P.; Chen, Y. X.; Fu, M.; Chen, Z. H.; Huang, Q. L. Effect of high-voltage discharge non-thermal plasma on g-C3N4 in a plasmaphotocatalyst system. Chin. J. Catal.2018, 39, 1672–1682.

    CAS  Google Scholar 

  46. Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed.2010, 49, 4430–4434.

    CAS  Google Scholar 

  47. Fusco, C.; Casiello, M.; Catucci, L.; Comparelli, R.; Cotugno, P.; Falcicchio, A.; Fracassi, F.; Margiotta, V.; Moliterni, A.; Petronella, F. et al. TiO2@PEI-grafted-MWCNTs hybrids nanocomposites catalysts for CO2 photoreduction. Materials2018, 11, 307.

    Google Scholar 

  48. Ou, H. H.; Yang, P. J.; Lin, L. H.; Anpo, M.; Wang, X. C. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem., Int. Ed.2017, 56, 10905–10910.

    CAS  Google Scholar 

  49. Szanyi, J.; Kwak, J. H. Dissecting the steps of CO2 reduction: 1. The interaction of CO and CO2 with γ-Al2O3: An in situ FTIR study. Phys. Chem. Chem. Phys.2014, 16, 15117–15125.

    CAS  Google Scholar 

  50. Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. B.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res.2018, 11, 2450–2459.

    CAS  Google Scholar 

  51. Li, X. C.; Wu, M.; Lai, Z. H.; He, F. Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl. Catal. A: Gen.2005, 290, 81–86.

    CAS  Google Scholar 

  52. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy2015, 13, 757–770.

    CAS  Google Scholar 

  53. Zhao, Y. L.; Wei, Y. C.; Wu, X. X.; Zheng, H. L.; Zhao, Z.; Liu, J.; Li, J. M. Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl. Catal. B: Environ.2018, 226, 360–372.

    CAS  Google Scholar 

  54. Tang, Q. J.; Sun, Z. X.; Wang, P. L.; Li, Q.; Wang, H. Q.; Wu, Z. B. Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Appl. Surf. Sci.2019, 463, 456–462.

    CAS  Google Scholar 

  55. Peng, Y. H.; Wang, L. B.; Luo, Q. Q.; Cao, Y.; Dai, Y. Z.; Li, Z. L.; Li, H. L.; Zheng, X. S.; Yan, W. S.; Yang, J. L. et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem2018, 4, 613–625.

    CAS  Google Scholar 

  56. Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater.2016, 6, 1601273.

    Google Scholar 

  57. Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B: Environ.2016, 185, 225–232.

    CAS  Google Scholar 

  58. Delgado, E. R.; Alves, L. A.; Verly, R. M.; De Lemos, L. R.; De Mesquita, J. P. Purification, selection, and partition coefficient of highly oxidized carbon dots in aqueous two-phase systems based on polymer-salt pairs. Langmuir2017, 33, 12235–12243.

    CAS  Google Scholar 

  59. Hong, Y. Z.; Shi, J. Y.; Shi, W. D.; Fang, Z. Y.; Chen, R. J.; Huang, Y. Y. A facile and scalable route for synthesizing ultrathin carbon nitride nanosheets with efficient solar hydrogen evolution. Carbon2018, 136, 160–167.

    CAS  Google Scholar 

  60. Wu, P.; Wang, J. R.; Zhao, J.; Guo, L. J.; Osterloh, F. E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A2014, 2, 20338–20344.

    CAS  Google Scholar 

  61. Dong, G. H.; Jacobs, D. L.; Zang, L.; Wang, C. Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ.2017, 218, 515–524.

    CAS  Google Scholar 

  62. Li, Q.; Gao, S.; Hu, J.; Wang, H. Q.; Wu, Z. B. Superior NOx photocatalytic removal over hybrid hierarchical Bi/BiOI with high non-NO2 selectivity: Synergistic effect of oxygen vacancies and bismuth nanoparticles. Catal. Sci. Technol.2018, 8, 5270–5279.

    CAS  Google Scholar 

  63. Zhao, H. X.; Chen, X. Y.; Li, X. T.; Shen, C.; Qu, B. C.; Gao, J. S.; Chen, J. W.; Quan, X. Photoinduced formation of reactive oxygen species and electrons from metal oxide-silica nanocomposite: An EPR spin-trapping study. Appl. Surf. Sci.2017, 416, 281–287.

    CAS  Google Scholar 

  64. Yin, W. J.; Bai, L. J.; Zhu, Y. Z.; Zhong, S. X.; Zhao, L. H.; Li, Z. Q.; Bai, S. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces2016, 8, 23133–23142.

    CAS  Google Scholar 

  65. Putri, L. K.; Ng, B. J.; Ong, W. J.; Lee, H. W.; Chang, W. S.; Chai, S. P. Engineering nanoscale p-n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A2018, 6, 3181–3194.

    CAS  Google Scholar 

  66. Wu, J. C. S. Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal. Surv. Asia2009, 13, 30–40.

    CAS  Google Scholar 

  67. Xie, T. P.; Liu, Y.; Wang, H. Q.; Wu, Z. B. Layered MoSe2/Bi2WO6 composite with P-N heterojunctions as a promising visible-light induced photocatalyst. Appl. Surf. Sci.2018, 444, 320–329.

    CAS  Google Scholar 

  68. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H. Y.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc.2011, 133, 3964–3971.

    CAS  Google Scholar 

  69. Rajalakshmi, K.; Jeyalakshmi, V.; Krishnamurthy, K. R.; Viswanathan, B. Photocatalytic reduction of carbon dioxide by water on titania: Role of photophysical and structural properties. Indian J. Chem.2012, 51A, 411–419.

    CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (No. 51578488), Zhejiang Provincial “151” Talents Program, the Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07) and Changjiang Scholar Incentive Program (Ministry of Education, China, 2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianzhou Wang or Haiqiang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, S., Sun, Z. et al. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 12, 2749–2759 (2019). https://doi.org/10.1007/s12274-019-2509-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2509-2

Keywords

Navigation