Skip to main content
Log in

Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We assessed the influence of Yb3+ and Er3+ dopant concentration on the relative spectral distribution, quantum yield (ΦUC), and decay kinetics of the upconversion luminescence (UCL) and particle brightness (BUC) for similarly sized (33 nm) oleate-capped β-NaYF4:Yb3+,Er3+ upconversion (UC) nanoparticles (UCNPs) in toluene at broadly varied excitation power densities (P). This included an Yb3+ series where the Yb3+ concentration was varied between 11%-21% for a constant Er3+ concentration of 3%, and an Er3+ series, where the Er3+ concentration was varied between 1%-4% for a constant Yb3+ concentration of 14%. The results were fitted with a coupled rate equation model utilizing the UCL data and decay kinetics of the green and red Er3+ emission and the Yb3+ luminescence at 980 nm. An increasing Yb3+ concentration favors a pronounced triphotonic population of 4F9/2 at high P by an enhanced back energy transfer (BET) from the 4G11/2 level. Simultaneously, the Yb3+-controlled UCNPs absorption cross section overcompensates for the reduction in ΦUC with increasing Yb3+ concentration at high P, resulting in an increase in BUC. Additionally, our results show that an increase in Yb3+ and a decrease in Er3+ concentration enhance the color tuning range by P. These findings will pave the road to a deeper understanding of the energy transfer processes and their contribution to efficient UCL, as well as still debated trends in green-to-red intensity ratios of UCNPs at different P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mader, H. S.; Kele, P.; Saleh, S. M.; Wolfbeis, O. S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 2010, 14, 582–596.

    Article  Google Scholar 

  2. Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535.

    Article  Google Scholar 

  3. Chen, G. Y.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713.

    Article  Google Scholar 

  4. Resch-Genger, U.; Gorris, H. H. Perspectives and challenges of photonupconversion nanoparticles - Part I: Routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 2017, 409, 5855–5874.

    Article  Google Scholar 

  5. Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326.

    Article  Google Scholar 

  6. Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

    Article  Google Scholar 

  7. Chan, E. M. Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications. Chem. Soc. Rev. 2015, 44, 1653–1679.

    Article  Google Scholar 

  8. Haase, M.; Schafer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.

    Article  Google Scholar 

  9. Liu, G. K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 2015, 44, 1635–1652.

    Article  Google Scholar 

  10. Han, S. Y.; Deng, R. R.; Xie, X. J.; Liu, X. G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 11702–11715.

    Article  Google Scholar 

  11. Wang, X. D.; Valiev, R. R.; Ohulchanskyy, T. Y.; Ågren, H.; Yang, C. H.; Chen, G. Y. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 2017, 46, 4150–4167.

    Article  Google Scholar 

  12. Pilch, A.; Würth, C.; Kaiser, M.; Wawrzyńczyk, D.; Kurnatowska, M.; Arabasz, S.; Prorok, K.; Samoć, M.; Strek, W.; Resch-Genger, U. et al. Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell β-NaYF4 nanoparticles by dopant distribution and spacing. Small 2017, 13, 1701635.

    Article  Google Scholar 

  13. Renero-Lecuna, C.; Martín-Rodríguez, R.; Valiente, R.; González, J.; Rodríguez, F.; Krämer, K. W.; Güdel, H. U. Origin of the high upconversion green luminescence efficiency in β-NaYF4:2%Er3+,20%Yb3+. Chem. Mater. 2011, 23, 3442–3448.

    Article  Google Scholar 

  14. Anderson, R. B.; Smith, S. J.; May, P. S.; Berry, M. T. Revisiting the NIR-tovisible upconversion mechanism in β-NaYF4:Yb3+,Er3+. J. Phys. Chem. Lett. 2014, 5, 36–42.

    Article  Google Scholar 

  15. Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4:Yb3+,Er+. J. Phys. Chem. A 2015, 119, 9805–9811.

    Article  Google Scholar 

  16. Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch-Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283–4294.

    Article  Google Scholar 

  17. Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nanoand micrometer-sized particles-measurements and simulations. Nanoscale 2017, 9, 10051–10058.

    Article  Google Scholar 

  18. Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to nearinfrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.

    Article  Google Scholar 

  19. Wang, J.; Deng, R. R.; MacDonald, M. A.; Chen, B. L.; Yuan, J. K.; Wang, F.; Chi, D. Z.; Andy Hor, T. S.; Zhang, P.; Liu, G. K. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 2014, 13, 157–162.

    Article  Google Scholar 

  20. Gao, D. L.; Zhang, X. Y.; Chong, B.; Xiao, G. Q.; Tian, D. P. Simultaneous spectra and dynamics processes tuning of a single upconversion microtube through Yb3+ doping concentration and excitation power. Phys. Chem. Chem. Phys. 2017, 19, 4288–4296.

    Article  Google Scholar 

  21. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–1465.

    Article  Google Scholar 

  22. Xue, X. J.; Uechi, S.; Tiwari, R. N.; Duan, Z. C.; Liao, M. S.; Yoshimura, M.; Suzuki, T.; Ohishi, Y. Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed. Opt. Mater. Express 2013, 3, 989–999.

    Article  Google Scholar 

  23. Xu, C. T.; Zhan, Q. Q.; Liu, H. C.; Somesfalean, G.; Qian, J.; He, S. L.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev. 2013, 7, 663–697.

    Article  Google Scholar 

  24. Wei, W.; Zhang, Y.; Chen, R.; Goggi, J.; Ren, N.; Huang, L.; Bhakoo, K. K.; Sun, H. D.; Tan, T. T. Y. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem. Mater. 2014, 26, 5183–5186.

    Article  Google Scholar 

  25. Wang, Y.; Liu, K.; Liu, X. M.; Dohnalová, K.; Gregorkiewicz, T.; Kong, X. G.; Aalders, M. C. G.; Buma, W. J.; Zhang, H. Critical shell thickness of core/shell upconversion luminescence nanoplatform for FRET application. J. Phys. Chem. Lett. 2011, 2, 2083–2088.

    Article  Google Scholar 

  26. Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989.

    Article  Google Scholar 

  27. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

    Article  Google Scholar 

  28. Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924–2929.

    Article  Google Scholar 

  29. Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligandfree colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.

    Article  Google Scholar 

  30. Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M.; Würth, C.; Christ, S.; Resch-Genger, U.; Schaferling, M.; Soukka, T. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746–11757.

    Article  Google Scholar 

  31. Liu, L.; Jiang, H. L.; Chen, Y. J.; Zhang, X. L.; Zhang, Z. G.; Wang, Y. X. Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart. J. Lumin. 2013, 143, 423–431.

    Article  Google Scholar 

  32. Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 2007, 111, 13730–13739.

    Article  Google Scholar 

  33. Xu, D. K.; Liu, C. F.; Yan, J. W.; Yang, S. H.; Zhang, Y. L. Understanding energy transfer mechanisms for tunable emission of Yb3+-Er3+ codoped GdF3 nanoparticles: Concentration-dependent luminescence by near-infrared and violet excitation. J. Phys. Chem. C 2015, 119, 6852–6860.

    Article  Google Scholar 

  34. Liao, J. S.; Nie, L. L.; Liu, S. H.; Liu, B.; Wen, H. R. Yb3+ concentration dependence of upconversion luminescence in Y2Sn2O7:Yb3+/Er3+ nanophosphors. J. Mater. Sci. 2014, 49, 6081–6086.

    Article  Google Scholar 

  35. Shen, B.; Cheng, S. M.; Gu, Y. Y.; Ni, D. R.; Gao, Y. L.; Su, Q. Q.; Feng, W.; Li, F. Y. Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles. Nanoscale 2017, 9, 1964–1971.

    Article  Google Scholar 

  36. Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Tian, L. J.; Wang, Y.; Tu, L. P.; Zhao, J. L.; Zhang, H. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+,Er3+ nanocrystals/submicroplates at low doping level. J. Phys. Chem. B 2008, 112, 15666–15672.

    Article  Google Scholar 

  37. Zhu, H. Y.; Lin, M.; Jin, G. R.; Lu, T. J.; Xu, F. A modified energy transfer model for determination of upconversion emission of β-NaYF4:Yb,Er: Role of self-quenching effect. J. Lumin. 2017, 185, 292–297.

    Article  Google Scholar 

  38. Li, D. G.; Qin, W. P.; Zhao, D.; Aidilibike, T.; Chen, H.; Liu, S. H.; Zhang, P.; Wang, L. L. Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals. Opt. Mater. Express 2016, 6, 270–278.

    Article  Google Scholar 

  39. Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-sizedependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360–6374.

    Article  Google Scholar 

  40. Fischer, S.; Bronstein, N. D.; Swabeck, J. K.; Chan, E. M.; Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals. Nano Lett. 2016, 16, 7241–7247.

    Article  Google Scholar 

  41. Hossan, M. Y.; Hor, A.; Luu, Q.; Smith, S. J.; May, P. S.; Berry, M. T. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4:Yb3+, Er3+ core and core-shell nanocrystals. J. Phys. Chem. C 2017, 121, 16592–16606.

    Article  Google Scholar 

  42. Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C.; Resch- Genger, U.; Haase, M. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem., Int. Ed. 2018, 57, 8765–8769.

    Article  Google Scholar 

  43. Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922–4928.

    Article  Google Scholar 

  44. Zhao, J. B.; Lu, Z. D.; Yin, Y. D.; McRae, C.; Piper, J. A.; Dawes, J. M.; Jin, D. Y.; Goldys, E. M. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: Role of nanocrystal size. Nanoscale 2013, 5, 944–952.

    Article  Google Scholar 

  45. Wilhelm, S.; Kaiser, M.; Würth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch-Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7, 1403–1410.

    Article  Google Scholar 

  46. Hudry, D.; Busko, D.; Popescu, R.; Gerthsen, D.; Abeykoon, A. M. M.; Kübel, C.; Bergfeldt, T.; Richards, B. S. Direct evidence of significant cation intermixing in upconverting core@shell nanocrystals: Toward a new crystallochemical model. Chem. Mater. 2017, 29, 9238–9246.

    Article  Google Scholar 

  47. Dühnen, S.; Haase, M. Study on the intermixing of core and shell in NaEuF4/NaGdF4 core/shell nanocrystals. Chem. Mater. 2015, 27, 8375–8386.

    Article  Google Scholar 

  48. Zuo, J.; Sun, D. P.; Tu, L. P.; Wu, Y. N.; Cao, Y. H.; Xue, B.; Zhang, Y. L.; Chang, Y. L.; Liu, X. M.; Kong, X. G. et al. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures. Angew. Chem., Int. Ed. 2018, 57, 3054–3058.

    Article  Google Scholar 

  49. Shalav, A.; Richards, B. S.; Trupke, T.; Krämer, K. W.; Güdel, H. U. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 2004, 86, 013505.

    Article  Google Scholar 

  50. Ivaturi, A.; MacDougall, S. K. W.; Martín-Rodríguez, R.; Quintanilla, M.; Marques-Hueso, J.; Krämer, K. W.; Meijerink, A.; Richards, B. S. Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices. J. Appl. Phys. 2013, 114, 013505.

    Article  Google Scholar 

  51. Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+. J. Phys. Chem. B 2003, 107, 1107–1112.

    Article  Google Scholar 

  52. Gao, D. L.; Zhang, X. Y.; Zheng, H. R.; Gao, W.; He, E. J. Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion. J. Alloys Compd. 2013, 554, 395–399.

    Article  Google Scholar 

  53. Zhang, H. X.; Jia, T. Q.; Chen, L.; Zhang, Y. C.; Zhang, S. A.; Feng, D. H.; Sun, Z. R.; Qiu, J. R. Depleted upconversion luminescence in NaYF4:Yb3+,Tm3+ nanoparticles via simultaneous two-wavelength excitation. Phys. Chem. Chem. Phys. 2017, 19, 17756–17764.

    Article  Google Scholar 

  54. Strohhöfer, C.; Polman, A. Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides. Opt. Mater. 2003, 21, 705–712.

    Article  Google Scholar 

  55. Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.

    Article  Google Scholar 

  56. Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305.

    Article  Google Scholar 

  57. Ylihärsilä, M.; Harju, E.; Arppe, R.; Hattara, L.; Hölsä, J.; Saviranta, P.; Soukka, T.; Waris, M. Genotyping of clinically relevant human adenoviruses by array-in-well hybridization assay. Clin. Microbiol. Infect. 2013, 19, 551–557.

    Article  Google Scholar 

  58. Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal. Chem. 2011, 83, 3431–3439.

    Article  Google Scholar 

  59. Würth, C.; Pauli, J.; Lochmann, C.; Spieles, M.; Resch-Genger, U. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal. Chem, 2012, 84, 1345–1352.

    Article  Google Scholar 

  60. Hatami, S.; Würth, C.; Kaiser, M.; Leubner, S.; Gabriel, S.; Bahrig, L.; Lesnyak, V.; Pauli, J.; Gaponik, N.; Eychmüller, A. et al. Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1- xHgxTe and PbS quantum dots - method- and material-inherent challenges. Nanoscale 2015, 7, 133–143.

    Article  Google Scholar 

  61. Resch-Genger, U.; Bremser, W.; Pfeifer, D.; Spieles, M.; Hoffmann, A.; DeRose, P. C.; Zwinkels, J. C.; Gauthier, F.; Ebert, B.; Taubert, R. D. et al. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards. Anal. Chem. 2012, 84, 3899–3907.

    Article  Google Scholar 

  62. Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535–1550.

    Article  Google Scholar 

Download references

Acknowledgments

Synthesis of the UCNPs by Emilia Palo and performance of the ICP-OES measurements by MSc. Melissa Monks is gratefully acknowledged. URG acknowledges financial support by research grants RE 1203/18-1 (German research council; DFG), RE 1203/20-1 (project NANOHYPE; DFG and M-Eranet) and TS from Tekes, the Finnish Funding Agency for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Resch-Genger.

Electronic supplementary material

12274_2019_2450_MOESM1_ESM.pdf

Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, M., Würth, C., Kraft, M. et al. Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations. Nano Res. 12, 1871–1879 (2019). https://doi.org/10.1007/s12274-019-2450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2450-4

Keywords

Navigation