Skip to main content
Log in

Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

CuInS2 semiconductor nanocrystals (NCs) exhibit large absorption coefficient, size-dependent photoluminescence and low toxicity, making them excellent candidates in a variety of bioapplications. However, precise control of both their composition and morphology to improve the luminescent efficiency remains a great challenge via conventional direct synthesis. Herein, we present a novel low-temperature template synthesis of highly efficient luminescent CuInS2 nanoprobes from In2S3 NCs via a facile cation exchange strategy. The proposed strategy enables synthesis of a series of CuInS2 NCs with broad size tunability from 2.2 to 29.6 nm. Through rationally manipulating the stoichiometry of Cu/In, highly efficient luminescence of CuInS2 with the maximum quantum yield of 28.6% has been achieved, which is about one order of magnitude improvement relative to that of directly synthesized NCs. By virtue of the intense emission of CuInS2 nanoprobes, we exemplify their application in sensitive homogeneous biodetection for an important biomolecule of adenosine triphosphate (ATP) with the limit of detection down to 49.3 nM. Moreover, the CulnS2 nanoprobes are explored for ATP-targeted cancer cell imaging, thus revealing their great potentials in the field of cancer diagnosis and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biological applications of quantum dots. Biomaterials 2007, 28, 4717–4732.

    Article  Google Scholar 

  2. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  3. Senger, R. T.; Bajaj, K. K. Optical properties of confined polaronic excitons in spherical ionic quantum dots. Phys. Rev. B 2003, 68, 045313.

    Article  Google Scholar 

  4. Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.

    Article  Google Scholar 

  5. Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

    Article  Google Scholar 

  6. Jang, Y.; Shapiro, A.; Isarov, M.; Rubin-Brusilovski, A.; Safran, A.; Budniak, A. K.; Horani, F.; Dehnel, J.; Sashchiuk, A.; Lifshitz, E. Interface control of electronic and optical properties in IV-VI and II-VI core/shell colloidal quantum dots: A review. Chem. Commun. 2017, 53, 1002–1024.

    Article  Google Scholar 

  7. Shao, M.; Zhang, R.; Wang, C.; Hu, B.; Pang, D. W.; Xie, Z. X. Living cell synthesis of CdSe quantum dots: Manipulation based on the transformation mechanism of intracellular Se-precursors. Nano Res. 2018, 11, 2498–2511.

    Article  Google Scholar 

  8. Tanaka, M. Photoluminescence properties of Mn2+-doped II-VI semiconductor nanocrystals. J. Lumin. 2002, 100, 163–173.

    Article  Google Scholar 

  9. Xia, X.; Liu, Z. L.; Du, G. H.; Li, Y. B.; Ma, M. Wurtzite and zinc-blende CdSe based core/shell semiconductor nanocrystals: Structure, morphology and photoluminescence. J. Lumin. 2010, 130, 1285–1291.

    Article  Google Scholar 

  10. Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221–12237.

    Article  Google Scholar 

  11. Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.

    Article  Google Scholar 

  12. Liu, X. Y.; Zhang, G. Z.; Chen, H.; Li, H. W.; Jiang, J.; Long, Y. T.; Ning, Z. J. Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Res. 2018, 11, 1379–1388.

    Article  Google Scholar 

  13. Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater. 2008, 20, 6434–6443.

    Article  Google Scholar 

  14. Berends, A. C.; Mangnus, M. J. J.; Xia, C. H.; Rabouw, F. T.; de Mello Donega, C. Optoelectronic properties of ternary I-III-VI2 semiconductor nanocrystals: Bright prospects with elusive origins. J. Phys. Chem. Lett. 2019, 10, 1600–1616.

    Article  Google Scholar 

  15. Chen, B. K.; Pradhan, N.; Zhong, H. Z. From large-scale synthesis to lighting device applications of ternary I-III-VI semiconductor nanocrystals: Inspiring greener material emitters. J. Phys. Chem. Lett. 2018, 9, 435–445.

    Article  Google Scholar 

  16. van der Stam, W.; Bladt, E.; Rabouw, F. T.; Bals, S.; de Mello Donega, C. Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange. ACS Nano 2015, 9, 11430–11438.

    Article  Google Scholar 

  17. Hughes, K. E.; Ostheller, S. R.; Nelson, H. D.; Gamelin, D. R. Copper's role in the photoluminescence of Ag1−xCuxInS2 nanocrystals, from copper-doped AgInS2 (x ~ 0) to CuInS2 (x = 1). Nano Lett. 2019, 19, 1318–1325.

    Article  Google Scholar 

  18. Chen, B. K.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and colortunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081–2088.

    Article  Google Scholar 

  19. Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620–5621.

    Article  Google Scholar 

  20. Gromova, M.; Lefrançois, A.; Vaure, L.; Agnese, F.; Aldakov, D.; Maurice, A.; Djurado, D.; Lebrun, C.; de Geyer, A.; Schülli, T. U. et al. Growth mechanism and surface state of CuInS2 nanocrystals synthesized with dodecanethiol. J. Am. Chem. Soc. 2017, 139, 15748–15759.

    Article  Google Scholar 

  21. Chen, B. K.; Chang, S.; Li, D. Y.; Chen, L. L.; Wang, Y. T.; Chen, T.; Zou, B. S.; Zhong, H. Z.; Rogach, A. L. Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem. Mater. 2015, 27, 5949–5956.

    Article  Google Scholar 

  22. Xia, C. H.; Wu, W. W.; Yu, T.; Xie, X. B.; van Oversteeg, C.; Gerritsen, H. C.; de Mello Donega, C. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano 2018, 12, 8350–8361.

    Article  Google Scholar 

  23. Zhang, W. J.; Zhong, X. H. Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst. Inorg. Chem. 2011, 50, 4065–4072.

    Article  Google Scholar 

  24. Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T. et al. From binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. ACS Nano 2015, 9, 521–531.

    Article  Google Scholar 

  25. van der Stam, W.; Berends, A. C.; Rabouw, F. T.; Willhammar, T.; Ke, X. X.; Meeldijk, J. D.; Bals, S.; de Mello Donega, C. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2−xS nanocrystals. Chem. Mater. 2015, 27, 621–628.

    Article  Google Scholar 

  26. Xia, C. H.; Winckelmans, N.; Prins, P. T.; Bals, S.; Gerritsen, H. C.; de Mello Donegá, C. Near-infrared-emitting CuInS2/ZnS dot-in-rod colloidal heteronanorods by seeded growth. J. Am. Chem. Soc. 2018, 140, 5755–5763.

    Article  Google Scholar 

  27. Migge, H.; Grzanna, J. Thermochemistry in the system Cu-In-S at 723 K. J. Mater. Res. 1994, 9, 125–131.

    Article  Google Scholar 

  28. Xiang, W. D.; Yang, H. L.; Liang, X. J.; Zhong, J. S.; Wang, J.; Luo, L.; Xie, C. P. Direct synthesis of highly luminescent Cu-Zn-In-S quaternary nanocrystals with tunable photoluminescence spectra and decay times. J. Mater. Chem. C 2013, 1, 2014–2020.

    Article  Google Scholar 

  29. Uehara, M.; Watanabe, K.; Tajiri, Y.; Nakamura, H.; Maeda, H. Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. J. Chem. Phys. 2008, 129, 134709.

    Article  Google Scholar 

  30. de Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D'Andrea, C.; Tassone, F.; Manna, L. Strongly fluorescent quaternary Cu-In-Zn-S nanocrystals prepared from Cu1−xInS2 nanocrystals by partial cation exchange. Chem. Mater. 2012, 24, 2400–2406.

    Article  Google Scholar 

  31. Kim, Y. K.; Ahn, S. H.; Chung, K.; Cho, Y. S.; Choi, C. J. The photoluminescence of CuInS2 nanocrystals: Effect of non-stoichiometry and surface modification. J. Mater. Chem. 2012, 22, 1516–1520.

    Article  Google Scholar 

  32. Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Luminescent films for chemo- and biosensing. Chem. Soc. Rev. 2015, 44, 6981–7009.

    Article  Google Scholar 

  33. Sun, M. Z.; Hao, T. T.; Li, X. Y.; Qu, A. H.; Xu, L. G.; Hao, C. L.; Xu, C. L.; Kuang, H. Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat. Commun. 2018, 9, 4494.

    Article  Google Scholar 

  34. Hou, T.; Li, W.; Zhang, L. F.; Li, F. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling. Analyst 2015, 140, 5748–5753.

    Article  Google Scholar 

  35. Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

    Article  Google Scholar 

  36. Hu, T. Y.; Na, W. D.; Yan, X.; Su, X. G. Sensitive fluorescence detection of ATP based on host-guest recognition between near-infrared β-cyclodextrin- CuInS2 QDs and aptamer. Talanta 2017, 165, 194–200.

    Article  Google Scholar 

  37. Green, M.; Taylor, R.; Wakefield, G. The synthesis of luminescent adenosine triphosphate passivated cadmium sulfide nanoparticles. J. Mater. Chem. 2003, 13, 1859–1861.

    Article  Google Scholar 

  38. Jia, J.; Zhang, H.; Zhao, L.; Zhu, Z. Y.; Zhang, G. Q.; Chai, Y. F. An optimized ion-pair HPLC method for simultaneous analysis of nucleoside triphosphate levels in hepatoma cell line. Chromatographia 2011, 73, 755–759.

    Article  Google Scholar 

  39. Deng, J. J.; Wang, K.; Wang, M.; Yu, P.; Mao, L. Q. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J. Am. Chem. Soc. 2017, 139, 5877–5882.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Strategic Priority Research Program of the CAS (No. XDB20000000), the National Natural Science Foundation of China (Nos. U1805252, 21771185, 21804134, 51672272, and 21771178), the CAS/SAFEA International Partnership Program for Creative Research Teams, and Natural Science Foundation of Fujian Province (No. 2017I0018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Datao Tu or Xueyuan Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tu, D., Yu, S. et al. Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals. Nano Res. 12, 1804–1809 (2019). https://doi.org/10.1007/s12274-019-2435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2435-3

Keywords

Navigation