Skip to main content
Log in

A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-skin), and artificial intelligence. Most of conventional fabrication methods used to produce high-performance TENGs involve plasma treatment, photolithography, printing, and electro-deposition. However, these fabrication techniques are expensive, multi-step, time-consuming and not suitable for mass production, which are the main barriers for efficient and cost-effective commercialization of TENGs. Here, we established a highly reliable scheme for the fabrication of a novel eco-friendly, low cost, and TENG-based pressure sensor (TEPS) designed for usage in self-powered-human gesture detection (SP-HGD) likewise wearable healthcare applications. The sensors with microstructured electrodes performed well with high sensitivity (7.697 kPa−1), a lower limit of detection (∼ 1 Pa), faster response time (< 9.9 ms), and highly stable over > 4,000 compression-releasing cycles. The proposed method is suitable for the adaptable fabrication of TEPS at an extremely low cost with possible applications in self-powered systems, especially e-skin and healthcare applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2018, 11, 1124–1134.

    Article  Google Scholar 

  2. Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970.

    Article  Google Scholar 

  3. Liu, Y.; Tao, L. Q.; Wang, D. Y.; Zhang, T. Y.; Yang, Y.; Ren, T. L. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl. Phys. Lett. 2017, 110, 123508.

    Article  Google Scholar 

  4. Chhetry, A.; Yoon, H.; Park, J. Y. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. J. Mater. Chem. C 2017, 5, 10068–10076.

    Article  Google Scholar 

  5. Park, S. W.; Das, P. S; Park, J. Y. Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis. Org. Electron. 2018, 53, 213–220.

    Article  Google Scholar 

  6. Maiolino, P.; Maggiali, M.; Cannata, G.; Metta, G.; Natale, L. A flexible and robust large scale capacitive tactile system for robots. IEEE Sens. J. 2013, 13, 3910–3917.

    Article  Google Scholar 

  7. Fuh, Y. K.; Wang, B. S.; Tsai, C. Y. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci. Rep. 2017, 7, 6759.

    Article  Google Scholar 

  8. Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

    Article  Google Scholar 

  9. Park, S. W.; Das, P. S.; Chhetry, A.; Park, J. Y. A flexible capacitive pressure sensor for wearable respiration monitoring system. IEEE Sens. J. 2017, 17, 6558–6564.

    Google Scholar 

  10. Mao, Y. C.; Geng, D. L.; Liang, E. J.; Wang, X. D. Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 2015, 15, 227–234.

    Article  Google Scholar 

  11. Sun, J. G.; Yang, T. N.; Kuo, I. S.; Wu, J. M.; Wang, C. Y.; Chen, L. J. A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications. Nano Energy 2017, 32, 180–186.

    Article  Google Scholar 

  12. Dudem, B.; Kim, D. H.; Yu, J. S. Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy. Nano Res. 2018, 11, 101–113.

    Article  Google Scholar 

  13. Mallineni, S. S. K.; Dong, Y. C.; Behlow, H.; Rao, A. M.; Podila, R. A wireless triboelectric nanogenerator. Adv. Energy Mater. 2018, 8, 1702736.

    Article  Google Scholar 

  14. Fan, F. R.; Tian, Z. Q; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  15. Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

    Article  Google Scholar 

  16. Yi, F.; Lin, L.; Niu, S. M.; Yang, P. K.; Wang, Z. N.; Chen, J.; Zhou, Y. S.; Zi, Y. L.; Wang, J.; Liao, Q. L. et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 2015, 25, 3688–3696.

    Article  Google Scholar 

  17. Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

    Article  Google Scholar 

  18. Lee, K. Y.; Yoon, H. J.; Jiang, T.; Wen, X. N.; Seung, W.; Kim, S. W.; Wang, Z. L. Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 2016, 6, 1502566.

    Article  Google Scholar 

  19. Lim, G. H.; Kwak, S. S.; Kwon, N.; Kim, T.; Kim, H.; Kim, S. M.; Kim, S. W.; Lim, B. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 2017, 42, 300–306.

    Article  Google Scholar 

  20. Cai, F.; Yi, C. R.; Liu, S. C.; Wang, Y.; Liu, L. C.; Liu, X. Q.; Xu, X. M.; Wang, L. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals. Biosens. Bioelectron. 2016, 77, 907–913.

    Article  Google Scholar 

  21. Zhang, L.; Jin, L.; Zhang, B. B.; Deng, W. L.; Pan, H.; Tang, J. F.; Zhu, M. H.; Yang, W. Q. Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 2015, 16, 516–523.

    Article  Google Scholar 

  22. Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.

    Article  Google Scholar 

  23. Yang, P. K.; Lin, L.; Yi, F.; Li, X. H.; Pradel, K. C.; Zi, Y. L.; Wu, C. I.; He, J. H.; Zhang, Y.; Wang, Z. L. A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 2015, 27, 3817–3824.

    Article  Google Scholar 

  24. Luo, J. J.; Fan, F. R.; Jiang, T.; Wang, Z. W.; Tang, W.; Zhang, C. P.; Liu, M. M.; Cao, G. Z.; Wang, Z. L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943.

    Article  Google Scholar 

  25. Dhakar, L.; Pitchappa, P.; Tay, F. E. H.; Lee, C. An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 2016, 19, 532–540.

    Article  Google Scholar 

  26. Garcia, C.; Trendafilova, I.; De Villoria, R. G.; Del Rio, J. S. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy 2018, 50, 401–409.

    Article  Google Scholar 

  27. Hwang, B. U.; Lee, J. H.; Trung, T. Q.; Roh, E.; Kim, D. I.; Kim, S. W.; Lee, N. E. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 2015, 9, 8801–8810.

    Article  Google Scholar 

  28. Yu, L. H.; Yi, Y. Y.; Yao, T.; Song, Y. Z.; Chen, Y. R.; Li, Q. C.; Xia, Z.; Wei, N.; Tian, Z. N.; Nie, B. Q. et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2019, 12, 331–338.

    Article  Google Scholar 

  29. Choi, A. Y.; Lee, C. J.; Park, J.; Kim, D.; Kim, Y. T. Corrugated textile based triboelectric generator for wearable energy harvesting. Sci. Rep. 2017, 7, 45583.

    Article  Google Scholar 

  30. Das, P. S.; Park, J. Y.; Kim, D. H. Vacuum filtered conductive nylon membrane-based flexible TENG for wearable electronics. Micro Nano Lett. 2017, 12, 697–700.

    Article  Google Scholar 

  31. Das, P. S.; Park, J. Y. Human skin based flexible triboelectric nanogenerator using conductive elastomer and fabric films. Electron. Lett. 2016, 52, 1885–1887.

    Article  Google Scholar 

  32. Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  Google Scholar 

  33. Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Yi, F.; Han, L. H.; Zhang, G. J.; Liu, S.; Liao, X. Q.; Zhang, Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017, 32, 389–396.

    Article  Google Scholar 

  34. Cheng, J. Y.; Sundholm, M.; Zhou, B.; Hirsch, M.; Lukowicz, P. Smart-surface: Large scale textile pressure sensors arrays for activity recognition. Pervasive Mob. Comput. 2016, 30, 97–112.

    Article  Google Scholar 

  35. Ai, Y. F.; Hsu, T. H.; Wu, D. C.; Lee, L.; Chen, J. H.; Chen, Y. Z.; Wu, S. C.; Wu, C.; Wang, Z. M.; Chueh, Y. L. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nanoparticles. J. Mater. Chem. C 2018, 6, 5514–5520.

    Article  Google Scholar 

  36. Dhakar, L.; Gudla, S.; Shan, X. C.; Wang, Z. P.; Tay, F. E. H.; Heng, C. H.; Lee, C. Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing. Sci. Rep. 2016, 6, 22253.

    Article  Google Scholar 

  37. Rasel, M. S.; Maharjan, P.; Salauddin, M.; Rahman, M. T.; Cho, H. O.; Kim, J. W.; Park, J. Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018, 49, 603–613.

    Article  Google Scholar 

  38. Li, Y. Q.; Huang, P.; Zhu, W. B.; Fu, S. Y.; Hu, N.; Liao, K. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci. Rep. 2017, 7, 45013.

    Article  Google Scholar 

  39. Lee, C. J.; Choi, A. Y.; Choi, C.; Sim, H. J.; Kim, S. J.; Kim, Y. T. Triboelectric generator for wearable devices fabricated using a casting method. RSC Adv. 2016, 6, 10094–10098.

    Article  Google Scholar 

  40. Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018, 11, 1873–1882.

    Article  Google Scholar 

  41. Jin, L. M.; Tao, J.; Bao, R. R.; Sun, L.; Pan, C. F. Self-powered real-time movement monitoring sensor using triboelectric nanogenerator technology. Sci. Rep. 2017, 7, 10521.

    Article  Google Scholar 

  42. Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

    Article  Google Scholar 

  43. Karagozler, M. E.; Poupyrev, I; Fedder, G. K.; Suzuki, Y. Paper generators: Harvesting energy from touching, rubbing and sliding. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, St. Andrews, Scotland, United Kingdom, 2013, pp 23–30.

  44. Rasel, M. S. U.; Park, J. Y. A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application. Appl. Energy 2017, 206, 150–158.

    Article  Google Scholar 

  45. Lamberti, A.; Clerici, F.; Fontana, M.; Scaltrito, L. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 2016, 6, 1600050.

    Article  Google Scholar 

  46. Lin, S. Y.; Feng, W. D.; Miao, X. F.; Zhang, X. X.; Chen, S. J.; Chen, Y. Q.; Wang, W.; Zhang, Y. N. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate. Biosens. Bioelectron. 2018, 110, 89–96.

    Article  Google Scholar 

  47. Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

    Article  Google Scholar 

  48. R-CHEK surface resistivity meters [Online]. https://doi.org/www.edtm.com/images/stories/pdf/manuals/r-chek_manual.pdf. (accessed Feb 4, 2019).

  49. Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.

    Article  Google Scholar 

  50. Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

    Article  Google Scholar 

  51. Huang, Z. L.; Gao, M.; Yan, Z. C.; Pan, T. S.; Khan, S. A.; Zhang, Y.; Zhang, H. L.; Lin, Y. Pyramid microstructure with single walled carbon nanotubes for flexible and transparent micro-pressure sensor with ultra-high sensitivity. Sens. Actuators A: Phys. 2017, 266, 345–351.

    Article  Google Scholar 

  52. Kwak, Y. H.; Kim, W.; Park, K. B.; Kim, K.; Seo, S. Flexible heartbeat sensor for wearable device. Biosens. Bioelectron. 2017, 94, 250–255.

    Article  Google Scholar 

  53. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  Google Scholar 

  54. Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313–4322.

    Article  Google Scholar 

  55. Wang, F.; Liu, S.; Shu, L.; Tao, X. M. Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon 2017, 121, 353–367.

    Article  Google Scholar 

  56. Xuan, X.; Kim, J. Y.; Hui, X.; Das, P. S.; Yoon, H. S.; Park, J. Y. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 2018, 120, 160–167.

    Article  Google Scholar 

  57. Pang, Y.; Jian, J. M.; Tu, T.; Yang, Z.; Ling, J.; Li, Y. X.; Wang, X. F.; Qiao, Y. C.; Tian, H.; Yang, Y. et al. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 2018, 116, 123–129.

    Article  Google Scholar 

  58. Tee, B. C. K.; Chortos, A.; Dunn, R. R.; Schwartz, G.; Eason, E.; Bao, Z. N. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434.

    Article  Google Scholar 

  59. Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

    Article  Google Scholar 

  60. Wu, X. D.; Han, Y. Y.; Zhang, X. X.; Zhou, Z. H.; Lu, C. H. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256.

    Article  Google Scholar 

  61. Parida, K.; Bhavanasi, V.; Kumar, V.; Bendi, R.; Lee, P. S. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Res. 2017, 10, 3557–3570.

    Article  Google Scholar 

  62. Chun, S.; Kim, Y.; Oh, H. S.; Bae, G.; Park, W. A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 2015, 7, 11652–11659.

    Article  Google Scholar 

  63. Wang, X. L.; Li, T. J.; Adams, J.; Yang, J. Transparent, stretchable, carbonnanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J. Mater. Chem. A 2013, 1, 3580–3586.

    Article  Google Scholar 

  64. Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

    Article  Google Scholar 

  65. Signal display processing [Online]. https://doi.org/processing.org/download/ (accessed Feb 3, 2019).

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the NRF grant funded by the Korean government (MSIT) (No. NRF-2017M3A9F1031270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Yeong Park.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P.S., Chhetry, A., Maharjan, P. et al. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 12, 1789–1795 (2019). https://doi.org/10.1007/s12274-019-2433-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2433-5

Keywords

Navigation