Skip to main content
Log in

Spectroscopic signatures of edge states in hexagonal boron nitride

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We use Z-contrast imaging and atomically resolved electron energy-loss spectroscopy on an aberration-corrected scanning transmission electron microscope to investigate the local electronic states of boron atoms at different edge structures in monolayer and bilayer h-BN. We find that edges with bonding unsaturated sp2 boron atoms have a unique spectroscopic signature with a prominent pre-peak at ∼ 190.2 eV in the B K-edge fine structure. First-principles calculations reveal that the observed pre-peak arises from excitations to the in-plane lowest-energy empty sp2 boron dangling bonds at the B-terminated edge. This spectroscopic signature can serve as a fingerprint to explore new edge structures in h-BN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

    Article  Google Scholar 

  2. Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M. D.; Gannett, W.; Zettl, A. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 2009, 80, 155425.

    Article  Google Scholar 

  3. Gibb, A. L.; Alem, N.; Chen, J. H.; Erickson, K. J.; Ciston, J.; Gautam, A.; Linck, M.; Zettl, A. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 2013, 135, 6758–6761.

    Article  Google Scholar 

  4. Liu, Y. Y.; Zou, X. L.; Yakobson, B. I. Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 2012, 6, 7053–7058.

    Article  Google Scholar 

  5. Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

    Article  Google Scholar 

  6. Wang, Q. X.; Zhang, Q.; Zhao, X. X.; Luo, X.; Wong, C. P. Y.; Wang, J. Y.; Wan, D.; Venkatesan, T.; Pennycook, S. J.; Loh, K. P. et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 2018, 18, 6898–6905.

    Article  Google Scholar 

  7. Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210–2214.

    Article  Google Scholar 

  8. Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 2015, 15, 5804–5810.

    Article  Google Scholar 

  9. Qi, Y.; Zhang, Z. P.; Deng, B.; Zhou, X. B.; Li, Q. C.; Hong, M.; Li, Y. C.; Liu, Z. F.; Zhang, Y. F. Irreparable defects produced by the patching of h-BN frontiers on strongly interacting Re(0001) and their electronic properties. J. Am. Chem. Soc. 2017, 139, 5849–5856.

    Article  Google Scholar 

  10. Grad, G. B.; Blaha, P.; Schwarz, K.; Auwärter, W.; Greber, T. Density functional theory investigation of the geometric and spintronic structure of h-BN/Ni(111) in view of photoemission and STM experiments. Phys. Rev. B 2003, 68, 085404.

    Article  Google Scholar 

  11. Suenaga, K.; Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 2010, 468, 1088–1090.

    Article  Google Scholar 

  12. Suenaga, K.; Tencé, M.; Mory, C.; Colliex, C.; Kato, H.; Okazaki, T.; Shinohara, H.; Hirahara, K.; Bandow, S.; Iijima, S. Element-selective single atom imaging. Science 2000, 290, 2280–2282.

    Article  Google Scholar 

  13. Zhou, W.; Kapetanakis, M. D.; Prange, M. P.; Pantelides, S. T.; Pennycook, S. J.; Idrobo, J. C. Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 2012, 109, 206803.

    Article  Google Scholar 

  14. Suenaga, K.; Sato, Y.; Liu, Z.; Kataura, H.; Okazaki, T.; Kimoto, K.; Sawada, H.; Sasaki, T.; Omoto, K.; Tomita, T. et al. Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 2009, 1, 415–418.

    Article  Google Scholar 

  15. Senga, R.; Komsa, H. P.; Liu, Z.; Hirose-Takai, K.; Krasheninnikov, A. V.; Suenaga, K. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes. Nat. Mater. 2014, 13, 1050–1054.

    Article  Google Scholar 

  16. Tan, H. Y.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G. 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys. Rev. Lett. 2011, 107, 107602.

    Article  Google Scholar 

  17. Kimoto, K.; Asaka, T.; Nagai, T.; Saito, M.; Matsui, Y.; Ishizuka, K. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 2007, 450, 702–704.

    Article  Google Scholar 

  18. Ramasse, Q. M.; Seabourne, C. R.; Kepaptsoglou, D. M.; Zan, R.; Bangert, U.; Scott, A. J. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 2013, 13, 4989–4995.

    Article  Google Scholar 

  19. Lin, Y. C.; Teng, P. Y.; Chiu, P. W.; Suenaga, K. Exploring the single atom spin state by electron spectroscopy. Phys. Rev. Lett. 2015, 115, 206803.

    Article  Google Scholar 

  20. Warner, J. H.; Lin, Y. C.; He, K.; Koshino, M.; Suenaga, K. Atomic level spatial variations of energy states along graphene edges. Nano Lett. 2014, 14, 6155–6159.

    Article  Google Scholar 

  21. Suenaga, K.; Kobayashi, H.; Koshino, M. Core-level spectroscopy of point defects in single layer h-BN. Phys. Rev. Lett. 2012, 108, 075501.

    Article  Google Scholar 

  22. Alem, N.; Ramasse, Q. M.; Seabourne, C. R.; Yazyev, O. V.; Erickson, K.; Sarahan, M. C.; Kisielowski, C.; Scott, A. J.; Louie, S. G.; Zettl, A. Subangstrom edge relaxations probed by electron microscopy in hexagonal boron nitride. Phys. Rev. Lett. 2012, 109, 205502.

    Article  Google Scholar 

  23. Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

    Article  Google Scholar 

  24. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  25. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  26. Buczko, R.; Duscher, G.; Pennycook, S. J.; Pantelides, S. T. Excitonic effects in core-excitation spectra of semiconductors. Phys. Rev. Lett. 2000, 85, 2168–2171.

    Article  Google Scholar 

  27. Duscher, G.; Buczko, R.; Pennycook, S. J.; Pantelides, S. T. Core-hole effects on energy-loss near-edge structure. Ultramicroscopy 2001, 86, 355–362.

    Article  Google Scholar 

  28. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  Google Scholar 

Download references

Acknowledgements

This research performed in the CAS Key Laboratory of Vacuum Sciences in University of Chinese Academy of Sciences is financially supported by the National Key R&D Program of China (No. 2018YFA0305800), the National Natural Science Foundation of China (Nos. 51622211 and 51872284), the CAS Key Research Program of Frontier Sciences, the CAS Pioneer Hundred Talents Program, and Beijing Nova Program (No. Z181100006218023). The electron microscopy work was supported in part by Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. Work at Vanderbilt University was supported by U.S. Department of Energy grant DE-FG02-09ER46554 and by the McMinn Endowment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Yang Zhang or Wu Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Tao, L., Zhang, YY. et al. Spectroscopic signatures of edge states in hexagonal boron nitride. Nano Res. 12, 1663–1667 (2019). https://doi.org/10.1007/s12274-019-2417-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2417-5

Keywords

Navigation