Skip to main content
Log in

Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nickel-, cobalt-, and iron-based (oxy)hydroxides comprise the most-commonly studied electrocatalysts for the oxygen-evolution reaction (OER) in alkaline solution. A fundamental understanding of composition-structure-activity relationships for mixed-metal Ni-Co and Ni-Co-Fe (oxy)hydroxides is important to guide the design of advanced OER catalysts. Here we use cyclic voltammetry, chronopotentiometry, inductively-coupled plasma-optical emission spectroscopy, and in situ electrical conductivity measurements to characterize the properties and activity of various compositions of Ni-Co-Fe (oxy)hydroxides prepared by cathodic co-electrodeposition. Consistent with previous studies, we find Fe is essential for the mixed-metal (oxy)hydroxides to achieve high OER activity. In the rigorous absence of Fe (achieved by using specially cleaned electrolytes), the most-active Ni-Co (oxy)hydroxide composition has an OER turn-over frequency only twice that of pure Co (oxy)hydroxide, suggesting minimal synergism between the two metals. The addition of Co to Ni-Fe (oxy)hydroxides shifts the onset of electrical conductivity to lower potentials, but has little effect on the intrinsic OER activity, with the most-active Ni-Co-Fe (oxy)hydroxide having an OER turn-over frequency only ~ 1.5 times that of the Ni-Fe (oxy)hydroxides. The magnitudes of the electrical conductivities are similar for all the compositions measured. Density-functional-theory-calculated projected density of states show a significant contribution of all chemical elements at the valence band edge of the mixed-metal oxyhydroxide electronic structure, demonstrating significant electronic hybridization between the elements. The calculations suggest the involvement of all the elements in modulating the electronic structure at putative Fe-based active sites that are probably located at edges or defects in the two-dimensional oxyhydroxide sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ursua, A.; Gandia, L. M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426.

    Article  Google Scholar 

  2. Armaroli, N.; Balzani, V. Solar electricity and solar fuels: Status and perspectives in the context of the energy transition. Chem.—Eur. J. 2016, 22, 32–57.

    Article  Google Scholar 

  3. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  4. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  5. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

    Article  Google Scholar 

  6. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solutioncast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  Google Scholar 

  7. Burke, M. S.; Zou, S. H.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 2015, 6, 3737–3742.

    Article  Google Scholar 

  8. Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

    Article  Google Scholar 

  9. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. 2016, 128, 3758–3762.

    Article  Google Scholar 

  10. Bi, Y. M.; Cai, Z.; Zhou, D. J.; Tian, Y.; Zhang, Q.; Zhang, Q.; Kuang, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. J. Catal. 2018, 358, 100–107.

    Article  Google Scholar 

  11. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 1987, 134, 377–384.

    Article  Google Scholar 

  12. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  13. Edison, T. A. Electrolyte for alkaline storage batteries. U.S. Patent 876,445, January 14, 1908.

  14. Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243–7254.

    Article  Google Scholar 

  15. Tseung, A. C. C.; Jasem, S. Oxygen evolution on semiconducting oxides. Electrochim. Acta 1977, 22, 31–34.

    Article  Google Scholar 

  16. Jasem, S. M.; Tseung, A. C. C. A potentiostatic pulse study of oxygen evolution on Teflon-bonded nickel-cobalt oxide electrodes. J. Electrochem. Soc. 1979, 126, 1353–1360.

    Article  Google Scholar 

  17. Kreysa, G; Håkansson, B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 1986, 201, 61–83.

    Article  Google Scholar 

  18. Wang, L.; Lin, C.; Huang, D. K.; Zhang, F. X.; Wang, M. K.; Jin, J. A comparative study of composition and morphology effect of NixCo1-x(OH)2on oxygen evolution/reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 10172–10180.

    Article  Google Scholar 

  19. Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

    Article  Google Scholar 

  20. Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano 2014, 8, 9518–9523.

    Article  Google Scholar 

  21. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.

    Article  Google Scholar 

  22. Singh, R. N.; Pandey, J. P.; Singh, N. K.; Lal, B.; Chartier, P.; Koenig, J. F. Sol-gel derived spinel MxCo3-xO4 (M = Ni, Cu; 0 = x = 1) films and oxygen evolution. Electrochim. Acta 2000, 45, 1911–1919.

    Article  Google Scholar 

  23. Yan, X. D.; Li, K. X.; Lyu, L.; Song, F.; He, J.; Niu, D. M.; Liu, L.; Hu, X. L.; Chen, X. B. From water oxidation to reduction: Transformation from NixCo3-xO4 nanowires to NiCo/NiCoOx heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 3208–3214.

    Article  Google Scholar 

  24. Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

    Article  Google Scholar 

  25. Zhu, C. Z.; Wen, D.; Leubner, S.; Oschatz, M.; Liu, W.; Holzschuh, M.; Simon, F.; Kaskel, S.; Eychmüller, A. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chem. Commun. 2015, 51, 7851–7854.

    Article  Google Scholar 

  26. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  Google Scholar 

  27. Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

    Article  Google Scholar 

  28. Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1441–1447.

    Google Scholar 

  29. Bocca, C.; Barbucci, A.; Delucchi, M.; Cerisola, G. Nickel-cobalt-oxide-coated electrodes: Influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. Int. J. Hydrogen Energy 1999, 24, 21–26.

    Article  Google Scholar 

  30. Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.

    Article  Google Scholar 

  31. Srivastava, M.; Elias Uddin, M.; Singh, J.; Kim, N. H.; Lee, J. H. Preparation and characterization of self-assembled layer by layer NiCo2O4-reduced graphene oxide nanocomposite with improved electrocatalytic properties. J. Alloys Compd. 2014, 590, 266–276.

    Article  Google Scholar 

  32. Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.

    Article  Google Scholar 

  33. Xiao, C. L.; Lu, X. Y.; Zhao, C. Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co3O4 for enhanced oxygen evolution. Chem. Commun. 2014, 50, 10122–10125.

    Article  Google Scholar 

  34. Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Chargetransfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155–161.

    Article  Google Scholar 

  35. Zhao, X.; Fu, Y.; Wang, J.; Xu, Y. J.; Tian, J. H.; Yang, R. Z. Ni-doped CoFe2O4 hollow nanospheres as efficient bi-functional catalysts. Electrochim. Acta 2016, 201, 172–178.

    Article  Google Scholar 

  36. Wang, A. L.; Xu, H.; Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett. 2016, 1, 445–453.

    Article  Google Scholar 

  37. Wang, T.; Xu, W. C.; Wang, H. X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochim. Acta 2017, 257, 118–127.

    Article  Google Scholar 

  38. Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energy Environ. Sci. 2014, 7, 2376–2382.

    Article  Google Scholar 

  39. Fan, J. Q.; Chen, Z. F.; Shi, H. J.; Zhao, G. H. In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation. Chem. Commun. 2016, 52, 4290–4293.

    Article  Google Scholar 

  40. Deng, X. H.; Öztürk, S.; Weidenthaler, C.; Tüysüz, H. Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 21225–21233.

    Article  Google Scholar 

  41. Long, X.; Xiao, S.; Wang, Z. L.; Zheng, X. L.; Yang, S. H. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction. Chem. Commun. 2015, 51, 1120–1123.

    Article  Google Scholar 

  42. Zhu, X. L.; Tang, C.; Wang, H. F.; Li, B. Q.; Zhang, Q.; Li, C Y.; Yang, C. H.; Wei, F. Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A, 2016, 4, 7245–7250.

    Article  Google Scholar 

  43. Dong, C. Q.; Han, L. L.; Zhang, C.; Zhang, Z. H. Scalable dealloying route to mesoporous ternary CoNiFe layered double hydroxides for efficient oxygen evolution. ACS Sustainable Chem. Eng. 2018, 6, 16096–16104.

    Article  Google Scholar 

  44. Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 2018, 6, 167–178.

    Article  Google Scholar 

  45. Thenuwara, A. C.; Attanayake, N. H.; Yu, J.; Perdew, J. P.; Elzinga, E. J.; Yan, Q. M.; Strongin, D. R. Cobalt intercalated layered NiFe double hydroxides for the oxygen evolution reaction. J. Phys. Chem. B 2018, 122, 847–854.

    Article  Google Scholar 

  46. Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.

    Article  Google Scholar 

  47. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  Google Scholar 

  48. Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.

    Article  Google Scholar 

  49. Merrill, M.; Worsley, M.; Wittstock, A.; Biener, J.; Stadermann, M. Determination of the “NiOOH” charge and discharge mechanisms at ideal activity. J. Electroanal. Chem. 2014, 717–718, 177–188.

    Article  Google Scholar 

  50. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

    Article  Google Scholar 

  51. Deng, J.; Nellist, M. R.; Stevens, M. B.; Dette, C.; Wang, Y.; Boettcher, S. W. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 2017, 17, 6922–6926.

    Article  Google Scholar 

  52. Dette, C.; Hurst, M. R.; Deng, J.; Nellist, M. R.; Boettcher, S. W. Structural evolution of metal (oxy)hydroxide nanosheets during the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 5590–5594.

    Article  Google Scholar 

  53. Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.

    Article  Google Scholar 

  54. Zou, S. H.; Burke, M. S.; Kast, M. G.; Fan, J.; Danilovic, N.; Boettcher, S. W. Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: Intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 2015, 27, 8011–8020.

    Article  Google Scholar 

  55. Batchellor, A. S.; Kwon, G.; Laskowski, F. A. L.; Tiede, D. M.; Boettcher, S. W. Domain structures of Ni and NiFe (oxy)hydroxide oxygen-evolution catalysts from X-ray pair distribution function analysis. J. Phys. Chem. C 2017, 121, 25421–25429.

    Article  Google Scholar 

  56. Doyle, R. L.; Godwin, I. J.; Brandon, M. P.; Lyons, M. E. G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737–13783.

    Article  Google Scholar 

  57. Hunter, B. M.; Thompson, N. B.; Müller, A. M.; Rossman, G. R.; Hill, M. G.; Winkler, J. R.; Gray, H. B. Trapping an iron(VI) water-splitting intermediate in nonaqueous media. Joule 2018, 2, 747–763.

    Article  Google Scholar 

  58. Enman, L. J.; Stevens, M. B.; Dahan, M. H.; Nellist, M. R.; Toroker, M. C.; Boettcher, S. W. Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 12840–12844.

    Article  Google Scholar 

  59. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  60. Kuznetsov, D. A.; Han, B. H.; Yu, Y.; Rao, R. R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2018, 2, 225–244.

    Article  Google Scholar 

  61. Forslund, R. P.; Hardin, W. G.; Rong, X.; Abakumov, A. M.; Filimonov, D.; Alexander, C. T.; Mefford, J. T.; Iyer, H.; Kolpak, A. M.; Johnston, K. P. et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1-xFexO4±δ Ruddlesden-Popper oxides. Nat. Commun. 2018, 9, 3150.

    Article  Google Scholar 

  62. Enman, L. J.; Burke, M. S.; Batchellor, A. S.; Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 2016, 6, 2416–2423.

    Article  Google Scholar 

  63. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361–11364.

    Article  Google Scholar 

  64. Zhang, T.; Nellist, M. R.; Enman, L. J.; Xiang, J. H.; Boettcher, S. W. Modes of Fe incorporation in Co-Fe (oxy)hydroxide oxygen evolution electrocatalysts. ChemSusChem 2018, 11, 1–8.

    Article  Google Scholar 

  65. Xu, D. Y.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N. et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS Catal. 2019, 9, 7–15.

    Article  Google Scholar 

  66. Natan, M. J.; Belanger, D.; Carpenter, M. K.; Wrighton, M. S. pH-sensitive nickel(II) hydroxide-based microelectrochemical transistors. J. Phys. Chem. 1987, 91, 1834–1842.

    Article  Google Scholar 

  67. Zhou, H. Q.; Yu, F.; Sun, J. Y.; He, R.; Chen, S.; Chu, C. W.; Ren, Z. F. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. Proc. Natl. Acad. Sci. USA 2017, 114, 5607–5611.

    Article  Google Scholar 

  68. Ayers, K. E.; Anderson, E. B.; Capuano, C.; Carter, B.; Dalton, L.; Hanlon, G.; Manco, J.; Niedzwiecki, M. Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 2010, 33, 3–15.

    Article  Google Scholar 

  69. Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.

    Article  Google Scholar 

  70. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  71. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  72. Conesa, J. C. Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C 2016, 120, 18999–19010.

    Article  Google Scholar 

  73. Zaffran, J.; Toroker, M. C. Metal-oxygen bond ionicity as an efficient descriptor for doped NiOOH photocatalytic activity. ChemPhysChem 2016, 17, 1630–1636.

    Article  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Science Foundation Chemical Catalysis program under Grant CHE-1566348. The computational work was supported by the Nancy and Stephen Grand Technion Energy Program (GTEP) and a grant from the Ministry of Science and Technology (MOST), Israel. The project made use of CAMCOR facilities supported by grants from the W. M. Keck Foundation, the M. J. Murdock Charitable Trust, ONAMI, the Air Force Research Laboratory (No. FA8650-05-1-5041), the National Science Foundation (Nos. 0923577 and 0421086), and the University of Oregon. ICP-OES was performed at the W. M. Keck Collaboratory for Plasma Spectrometry at Oregon State University and we acknowledge Andy Ungerer for help with data acquisition and interpretation. S. W. B. further acknowledges support from the Sloan and Dreyfus Foundations. The students of the UO 2015 CH399 “Research Immersion” course are acknowledged for preliminary data collection. The authors thank Adam Batchellor for insightful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maytal Caspary Toroker or Shannon W. Boettcher.

Electronic supplementary material

12274_2019_2391_MOESM1_ESM.pdf

Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, M.B., Enman, L.J., Korkus, E.H. et al. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 12, 2288–2295 (2019). https://doi.org/10.1007/s12274-019-2391-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2391-y

Keywords

Navigation