Skip to main content
Log in

Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density. It is believed that the rational design of three-dimensional (3D) architecture for catalyst is a key factor for the remarkable performance. Metal-organic frameworks (MOFs) derived materials possess excellent architecture, which is beneficial for Li-O2 batteries. In this work, ZIF-67 is used as precursor template and calcinated under different temperature to produce Co3O4 crystals. When the anneal treatment is under 350 °C, the derived Co3O4 nanocage holds the most complete skeleton, which provides better charge transfer ability as well as O2 and Li+ diffusion. Meanwhile, the Co3O4 nanocage owns more oxygen vacancies, offering more active sites. With the synergistic effect of nanocage structure and active sites, the Co3O4 nanocage stably delivers a large specific capacity of 15,500 mAh·g-1 as well as a long cycle-life of 132 cycles at limited discharge capacity of 1,000 mAh·g-1 under discharge/charge current density of 0.5 A·g-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, H. B.; Luo, S. H.; Liu, C. L.; Yi, T. F.; Zhai, Y. C. High-surface-area and porous Co2P nanosheets as cost-effective cathode catalysts for Li-O2 batteries. ACS. Appl. Mater. Interfaces 2018, 10, 21281–21290.

    Article  Google Scholar 

  2. Liu, T.; Frith, J. T.; Kim, G.; Kerber, R. N.; Dubouis, N.; Shao, Y. L.; Liu, Z. G.; Magusin, P. C. M. M.; Casford, M. T. L.; Garcia-Araez, N. et al. The effect of water on quinone redox mediators in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 2018, 140, 1428–1437.

    Article  Google Scholar 

  3. Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS. Appl. Mater. Interfaces 2018, 10, 7989–7995.

    Article  Google Scholar 

  4. Xu, C. Y.; Dai, J. C.; Teng, X. G.; Zhu, Y. M. Preparation of a new carbon nanofiber as a high-capacity air electrode for nonaqueous lithium-oxygen batteries. ChemCatChem 2016, 8, 3725–3731.

    Article  Google Scholar 

  5. Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

    Article  Google Scholar 

  6. Lyu, Z. Y.; Zhou, Y.; Dai, W. R.; Cui, X. H.; Lai, M.; Wang, L.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 6046–6072.

    Article  Google Scholar 

  7. Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.

    Article  Google Scholar 

  8. Lin, X. D.; Yuan, R. M.; Cai, S. R.; Jiang, Y. H.; Lei, J.; Liu, S. G.; Wu, Q. H.; Liao, H. G.; Zheng, M. S.; Dong, Q. F. An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1800089.

    Article  Google Scholar 

  9. Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem. Mater. 2017, 29, 10542–10550.

    Article  Google Scholar 

  10. Balaish, M.; Ein-Eli, Y. The role of air-electrode structure on the incorporation of immiscible PFCs in nonaqueous Li-O2 battery. ACS. Appl. Mater. Interfaces 2017, 9, 9726–9737.

    Article  Google Scholar 

  11. Wang, L. K.; Tang, Z. H.; Yan, W.; Wang, Q. N.; Yang, H. Y.; Chen, S. W. Co@Pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J. Power. Sources. 2017, 343, 458–466.

    Article  Google Scholar 

  12. Ren, X. Z.; Huang, M. J.; Luo, S.; Li, Y. L.; Deng, L. B.; Mi, H. W.; Sun, L. N.; Zhang, P. X. PdNi alloy decorated 3D hierarchically N, S co-doped macro-mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li-O2 batteries. J. Mater. Chem. A 2018, 6, 10856–10867.

    Article  Google Scholar 

  13. Xiang, J.; Song, T.; Paik, U. Rational design of Au dotted Co3O4 nanosheets as an efficient bifunctional catalyst for Li-oxygen batteries. RSC Adv. 2017, 7, 51652–51657.

    Article  Google Scholar 

  14. Huang, H. B.; Luo, S. H.; Liu, C. L.; Wang, Q.; Wang, Z. Y.; Zhang, Y. H.; Hao, A. M.; Liu, Y. G.; Li, J. Z.; Zhai, Y. C. et al. Ag-decorated highly mesoporous Co3O4 nanosheets on nickel foam as an efficient free-standing cathode for Li-O2 batteries. J. Alloy. Compd. 2017, 726, 939–946.

    Article  Google Scholar 

  15. Kim, Y.; Park, J. H.; Kim, J. G.; Noh, Y.; Kim, Y.; Han, H.; Kim, W. B. Ruthenium oxide incorporated one-dimensional cobalt oxide composite nanowires as lithium-oxygen battery cathode catalysts. ChemCatChem 2017, 9, 3554–3562.

    Article  Google Scholar 

  16. Huang, L. L.; Mao, Y. J.; Wang, G. Q.; Xia, X. K.; Xie, J.; Zhang, S. C.; Du, G. H.; Cao, G. S.; Zhao, X. B. Ru-decorated knitted Co3O4 nanowires as a robust carbon/binder-free catalytic cathode for lithium-oxygen batteries. New. J. Chem. 2016, 40, 6812–6818.

    Article  Google Scholar 

  17. Liao, K. M.; Zhang, T.; Wang, Y. Q.; Li, F. J.; Jian, Z. L.; Yu, H. J.; Zhou, H. S. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. Chemsuschem 2015, 8, 1429–1434.

    Article  Google Scholar 

  18. Tang, C.; Sun, P.C.; Xie, J.; Tang, Z. C.; Yang, Z. X.; Dong, Z. X.; Cao, G. S.; Zhang, S. C.; Braun, P. V.; Zhao, X. B. Two-dimensional IrO2/MnO2 enabling conformal growth of amorphous Li2O2 for high-performance Li-O2 batteries. Energy Storage Mater. 2017, 9, 206–213.

    Article  Google Scholar 

  19. Luo, C. S.; Sun, H.; Jiang, Z. L.; Guo, H. L.; Gao, M. Y.; Wei, M. H.; Jiang, Z. M.; Zhou, H. J.; Sun, S. G. Electrocatalysts of Mn and Ru oxides loaded on MWCNTS with 3D structure and synergistic effect for rechargeable Li-O2 battery. Electrochim. Acta 2018, 282, 56–63.

    Article  Google Scholar 

  20. Wu, H. T.; Sun, W.; Shen, J. R.; Rooney, D. W.; Wang, Z. H.; Sun, K. N. Role of flower-like ultrathin Co3O4 nanosheets in water splitting and non-aqueous Li-O2 batteries. Nanoscale 2018, 10, 10221–10231.

    Article  Google Scholar 

  21. Zhou, Y.; Lyu, Z. Y.; Wang, L. J.; Dong, W. H.; Dai, W. R.; Cui, X. H.; Hao, Z. K.; Lai, M.; Chen, W. Co3O4 functionalized porous carbon nanotube oxygen-cathodes to promote Li2O2 surface growth for improved cycling stability of Li-O2 batteries. J. Mater. Chem. A 2017, 5, 25501–25508.

    Article  Google Scholar 

  22. Tong, S. F.; Zheng, M. B.; Lu, Y.; Lin, Z. X.; Li, J.; Zhang, X. P.; Shi, Y.; He, P.; Zhou, H. S. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries. J. Mater. Chem. A 2015, 3, 16177–16182.

    Article  Google Scholar 

  23. Liu, H. F.; Gao, X. Q.; Yao, X. L.; Chen, M. X.; Zhou, G. J.; Qi, J.; Zhao, X. L.; Wang, W. C.; Zhang, W.; Cao, R. Manganese(II) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation. Chem. Sci. 2019, 10, 191–197.

    Article  Google Scholar 

  24. Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392–9396.

    Article  Google Scholar 

  25. Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

    Article  Google Scholar 

  26. Wan, S. H.; Qi, J.; Zhang, W.; Wang, W. N.; Zhang, S. K.; Liu, K. Q.; Zheng, H. Q.; Sun, J. L.; Wang, S. Y.; Cao, R. Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 2017, 29, 1700286.

    Article  Google Scholar 

  27. Jiang, Z. L.; Xie, J.; Luo, C. S.; Gao, M. Y.; Guo, H. L.; Wei, M. H.; Zhou, H. J.; Sun, H. 3D web freestanding RuO2-Co3O4 nanowires on Ni foam as highly efficient cathode catalysts for Li-O2 batteries. RSC Adv. 2018, 8, 23397–23403.

    Article  Google Scholar 

  28. Yu, Q. Y.; Yu, Q. L.; Sun, W.; Wu, H. T.; Wang, Z. H.; Rooney, D.; Sun, K. N. Novel Ni@Co3O4 web-like nanofiber arrays as highly effective cathodes for rechargeable Li-O2 batteries. Electrochim. Acta 2016, 220, 654–663.

    Article  Google Scholar 

  29. Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

    Article  Google Scholar 

  30. Zheng, F. C.; Yin, Z. C.; Xia, H. Y.; Zhang, Y. G. MOF-derived porous Co3O4 cuboids with excellent performance as anode materials for lithiumion batteries. Mater. Lett. 2017, 197, 188–191.

    Article  Google Scholar 

  31. Xiong, Y.; Xu, W. W.; Zhu, Z. Y.; Xue, Q. Z.; Lu, W. B.; Ding, D. G.; Zhu, L. ZIF-derived porous ZnO-Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance. Sens. Actuators B: Chem. 2017, 253, 523–532.

    Article  Google Scholar 

  32. Yan, W. J.; Guo, Z. Y.; Xu, H. S.; Lou, Y. B.; Chen, J. X.; Li, Q. W. Downsizing metal-organic frameworks with distinct morphologies as cathode materials for high-capacity Li-O2 batteries. Mater. Chem. Front. 2017, 1, 1324–1330.

    Article  Google Scholar 

  33. Yin, W.; Shen, Y.; Zou, F.; Hu, X. L.; Chi, B.; Huang, Y. H. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS. Appl. Mater. Interfaces. 2015, 7, 4947–4954.

    Article  Google Scholar 

  34. Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries. ACS. Appl. Mater. Interfaces 2018, 10, 660–667.

    Article  Google Scholar 

  35. Tan, G. Q.; Chong, L. N.; Amine, R.; Lu, J.; Liu, C.; Yuan, Y. F.; Wen, J. G.; He, K.; Bi, X. X.; Guo, Y. Y. et al. Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping cobalt@graphene multiplecapsule heterostructures. Nano Lett. 2017, 17, 2959–2966.

    Article  Google Scholar 

  36. Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.

    Article  Google Scholar 

  37. Su, D. W.; Dou, S. X.; Wang, G. X. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 2014, 4, 5767.

    Article  Google Scholar 

  38. Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B. L.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.

    Article  Google Scholar 

  39. Jiang, M.; He, H.; Yi, W. J.; Huang, W.; Pan, X.; Wang, M. Y.; Chao, Z. S. ZIF-67 derived Ag-Co3O4@N-doped carbon/carbon nanotubes composite and its application in Mg-air fuel cell. Electrochem. Commun. 2017, 77, 5–9.

    Article  Google Scholar 

  40. Wang, J. K.; Gao, R.; Zhou, D.; Chen, Z. J.; Wu, Z. H.; Schumacher, G.; Hu, Z. B.; Liu, X. F. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio. ACS Catal. 2017, 7, 6533–6541.

    Article  Google Scholar 

  41. Cao, J. Y.; Liu, S. Y.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Tips-bundled Pt/Co3O4 nanowires with directed peripheral growth of Li2O2 as efficient binder/carbon-free catalytic cathode for lithium-oxygen battery. ACS Catal. 2015, 5, 241–245.

    Article  Google Scholar 

  42. Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

    Article  Google Scholar 

  43. Mu, X. W.; Wen, Q. H.; Ou, G.; Du, Y. M.; He, P.; Zhong, M. L.; Zhu, H.; Wu, H.; Yang, S. X.; Liu, Y. J. et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries. Nano Energy 2018, 51, 83–90.

    Article  Google Scholar 

  44. Lee, S.; Lee, G. H.; Lee, H. J.; Dar, M. A.; Kim, D. W. Fe-based hybrid electrocatalysts for nonaqueous lithium-oxygen batteries. Sci. Rep. 2017, 7, 9495.

    Article  Google Scholar 

  45. Liu, X. H.; Si, W. P.; Zhang, J.; Sun, X. L.; Deng, J. W.; Baunack, S.; Oswald, S.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Sci. Rep. 2014, 4, 7452.

    Article  Google Scholar 

  46. Feng, M. Y.; Du, Q. H.; Su, L.; Zhang, G. W.; Wang, G. L.; Ma, Z. P.; Gao, W. M.; Qin, X. J.; Shao, G. J. Manganese oxide electrode with excellent electrochemical performance for sodium ion batteries by pre-intercalation of K and Na ions. Sci. Rep. 2017, 7, 2219.

    Article  Google Scholar 

  47. Wang, L.; Bi, X. F.; Yang, S. B. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 2016, 28, 7672–7679.

    Article  Google Scholar 

Download references

Acknowledgements

This work supported financially by the National Key R&D Program of China (No. 2016YFB0100200); Science Foundation of China University of Petroleum, Beijing (C201604, No. 2462014YJRC003) and State key laboratory of physical chemistry of solid surfaces, Xiamen University (No. 201703

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Sun, H., Shi, W. et al. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 12, 1555–1562 (2019). https://doi.org/10.1007/s12274-019-2388-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2388-6

Keywords

Navigation