Skip to main content
Log in

Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, biomass-derived three-dimensional (3D) porous carbon materials have been gaining more interest as promising microwave absorbers due to their low cost, vast availability, and sustainability. Here, a novel 3D interconnected porous magnetic carbon foams are in-situ synthesized via a combination of sol-gel and carbonization process with wheat straw as the carbon source and FeCl3·6H2O as the magnetic regulating agent. During the process of foams formation, the lignocelluloses from the steam-exploded wheat straw are converted into interconnected carbon sheet networks with hierarchical porous structures, and the precursor FeCl3·6H2O is converted into magnetic nanoparticles uniformly embedded in the porous carbon foams. The generated magnetic nanoparticles are benefit to enhance the interface polarization and magnetic loss ability to improve the efficient complementarities between the dielectric and magnetic loss, thus increasing the impedance matching. The obtained sample treated at 600 °C displays the best microwave absorption (MA) performance. It presents a minimal reflection loss (RL) of −43.6 dB at 7.1 GHz and the effective bandwidth (RL < −10 dB) is 3.3 GHz with the thickness of 4.7 mm. The 3D porous structure, multi-interfaces and the synergy of dielectric loss and magnetic loss make great contribution to the outstanding MA performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

    Article  Google Scholar 

  2. Wang, H. G.; Meng, F. B.; Li, J. Y.; Li, T.; Chen, Z. J.; Luo, H. B.; Zhou, Z. W. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 11801–11810.

    Article  Google Scholar 

  3. Meng, F. B.; Wang, H. G.; Wei, W.; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 2018, 11, 2847–2861.

    Article  Google Scholar 

  4. Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, S.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 2017, 10, 980–990.

    Article  Google Scholar 

  5. Liu, B.; Li, J. H.; Wang, L. F.; Ren, J. H.; Xu, Y. F. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties. Compos. Part A: Appl. Sci. Manuf. 2017, 97, 141–150.

    Article  Google Scholar 

  6. Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B: Eng. 2018, 137, 260–277.

    Article  Google Scholar 

  7. Zhou, N.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Shi, Z. Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Adv. 2017, 7, 45156–45169.

    Article  Google Scholar 

  8. Zhang, D. Q.; Jia, Y. X.; Cheng, J. Y.; Chen, S. M.; Chai, J. X.; Yang, X. Y.; Wu, Z. Y.; Wang, H.; Zhang, W. J.; Zhao, Z. L. et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J. Alloys Compd. 2018, 758, 62–71.

    Article  Google Scholar 

  9. Feng, J.; Zong, Y.; Sun, Y.; Zhang, Y.; Yang, X.; Long, G. K.; Wang, Y.; Li, X. H.; Zheng, X. L. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 2018, 345, 441–451.

    Article  Google Scholar 

  10. Li, N.; Huang, G. W.; Li, Y. Q.; Xiao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

    Article  Google Scholar 

  11. Bhattacharya, P.; Das, C. K. In situ synthesis and characterization of CuFe10Al2O19/MWCNT nanocomposites for supercapacitor and microwave-absorbing applications. Ind. Eng. Chem. Res. 2013, 52, 9594–9606.

    Article  Google Scholar 

  12. Shu, R. W.; Li, W. J.; Zhou, X.; Tian, D. D.; Zhang, G. Y.; Gan, Y.; Shi, J. J.; He, J. Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites. J. Alloys Compd. 2018, 743, 163–174.

    Article  Google Scholar 

  13. Han, M. K.; Yin, X. W.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 11803–11810.

    Article  Google Scholar 

  14. Yang, Z. H.; Li, Z. W.; Yang, Y. H.; Xu, Z. C. J. Optimization of ZnxFe3−xO4 hollow spheres for enhanced microwave attenuation. ACS Appl. Mater. Interfaces 2014, 6, 21911–21915.

    Article  Google Scholar 

  15. Li, Y. N.; Wu, T.; Jiang, K. D.; Tong, G. X.; Jin, K. Y.; Qian, N. X.; Zhao, L. H.; Lv, T. X. Mn2+ induced structure evolution and dual-frequency microwave absorption of MnxFe3−xO4 hollow/porous spherical chains made by a one-pot solvothermal approach. J. Mater. Chem. C 2016, 4, 7119–7129.

    Article  Google Scholar 

  16. Liu, W.; Pan, J. J.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal-organic frameworks: Effect of composition. Dalton Trans. 2017, 46, 3700–3709.

    Article  Google Scholar 

  17. Zhang, H.; Hong, M.; Chen, P.; Xie, A. J.; Shen, Y. H. 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: Synthesis, characterization and their electromagnetic wave absorption properties. J. Alloy. Compd. 2016, 665, 381–387.

    Article  Google Scholar 

  18. Deng, J.; Li, M. M.; Wang, Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion. Green Chem. 2016, 18, 4824–4854.

    Article  Google Scholar 

  19. Jin, H.; Wang, X. M.; Gu, Z. R.; Fan, Q. H.; Luo, B. A facile method for preparing nitrogen-doped graphene and its application in supercapacitors. J. Power Sources 2015, 273, 1156–1162.

    Article  Google Scholar 

  20. Perumal, A. B.; Sellamuthu, P. S.; Nambiar, R. B; Sadiku, E. R. Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl. Surf. Sci. 2018, 449, 591–602.

    Article  Google Scholar 

  21. Zhou, X.; Zhou, X. L.; Tang, X. S.; Xu, Y. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate. Bioresour. Technol. 2018, 261, 288–293.

    Article  Google Scholar 

  22. Littlewood, J.; Murphy, R. J.; Wang, L. Importance of policy support and feedstock prices on economic feasibility of bioethanol production from wheat straw in the UK. Renew. Sust. Energy Rev. 2013, 17, 291–300.

    Article  Google Scholar 

  23. Wang, L.; Littlewood, J.; Murphy, R. J. Environmental sustainability of bioethanol production from wheat straw in the UK. Renew. Sust. Energy Rev. 2013, 28, 715–725.

    Article  Google Scholar 

  24. Chen, M. J.; Zhang, X. Q.; Zhang, A. P.; Liu, C. F.; Sun, R. C. Direct preparation of green and renewable aerogel materials from crude bagasse. Cellulose 2016, 23, 1325–1334.

    Article  Google Scholar 

  25. Zhong, C.; Wang, C. M.; Huang, F.; Jia, H. H.; Wei, P. Wheat straw cellulose dissolution and isolation by tetra-n-butylammonium hydroxide. Carbohydr. Polym. 2013, 94, 38–45.

    Article  Google Scholar 

  26. Jiang, M.; Zhao, M. M.; Zhou, Z. W.; Huang, T.; Chen, X. L.; Wang, Y. Isolation of cellulose with ionic liquid from steam exploded rice straw. Ind. Crops Prod. 2011, 33, 734–738.

    Article  Google Scholar 

  27. Wu, G. L.; Cheng, Y. H.; Yang, Z. H.; Jia, Z. R.; Wu, H. J.; Yang, L. J.; Li, H. L.; Guo, P. Z.; Lv, H. L. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 2018, 333, 519–528.

    Article  Google Scholar 

  28. Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–3006.

    Article  Google Scholar 

  29. Zhang, Y. N.; Liu, W.; Quan, B.; Ji, G. B.; Ma, J. N.; Li, D. R.; Meng, W. Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption. J. Colloid Interface Sci. 2017, 508, 462–468.

    Article  Google Scholar 

  30. Wang, C.; Xiong, Y.; Wang, H. W.; Jin, C. D.; Sun, Q. F. Naturally three-dimensional laminated porous carbon network structured short nanochains bridging nanospheres for energy storage. J. Mater. Chem. A 2017, 5, 15759–15770.

    Article  Google Scholar 

  31. Fang, J. Y.; Shang, Y. S.; Chen, Z.; Wei, W.; Hu, Y.; Yue, X. G.; Jiang, Z. H. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. J. Mater. Chem. C 2017, 5, 4695–4705.

    Article  Google Scholar 

  32. Lei, Y. L.; Chen, F.; Luo, Y. J.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J. Mater. Sci. 2014, 49, 4236–4245.

    Article  Google Scholar 

  33. Jin, H; Nishiyama, Y.; Wada, M.; Kuga, S. Nanofibrillar cellulose aerogels. Colloids Surf. A: Phys. Eng. Aspects 2004, 240, 63–67.

    Article  Google Scholar 

  34. Gan, S.; Zakaria, S.; Chia, C. H.; Chen, R. S.; Ellis, A. V.; Kaco, H. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS One 2017, 12, e0173743.

    Article  Google Scholar 

  35. Wang, X. L.; Huang, X.; Chen, Z. R.; Liao, X. P.; Liu, C.; Shi, B. Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: Truly lightweight and high-performance microwave absorption materials. J. Mater. Chem. C 2015, 3, 10146–10153.

    Article  Google Scholar 

  36. Yu, M.; Han, Y. Y.; Li, J.; Wang, L. J. Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor. Int. J. Biol. Macromol. 2018, 115, 185–193.

    Article  Google Scholar 

  37. Wang, Z. F.; Shen, B.; Zou, A. H.; He, N. Y. Synthesis of Pd/Fe3O4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chem. Eng. J. 2005, 113, 27–34.

    Article  Google Scholar 

  38. Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

    Article  Google Scholar 

  39. Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

    Article  Google Scholar 

  40. He, J. Z.; Wang, X. X.; Zhang, Y. L.; Cao, M. S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140.

    Article  Google Scholar 

  41. Wang, L. N.; Jia, X. L.; Li, Y. F.; Yang, F.; Zhang, L. Q.; Liu, L. P.; Ren, X.; Yang, H. T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J. Mater. Chem. A 2014, 2, 14940–14946.

    Article  Google Scholar 

  42. Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

    Article  Google Scholar 

  43. Hu, C. G.; Mou, Z. Y.; Lu, G. W.; Chen, N.; Dong, Z. L.; Hu, M. J.; Qu, L. T. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 2013, 15, 13038–13043.

    Article  Google Scholar 

  44. Wu, Z. C.; Tian, K.; Huang, T.; Hu, W.; Xie, F. F.; Wang, J. J.; Su, M. X.; Li, L. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 11108–11115.

    Article  Google Scholar 

  45. Cheng, Y.; Meng, W.; Li, Z. Y.; Zhao, H. Q.; Cao, J. M.; Du, Y. W.; Ji, G. B. Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires. J. Mater. Chem. C 2017, 5, 8981–8987.

    Article  Google Scholar 

  46. Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

    Article  Google Scholar 

  47. Meng, F. B.; Wei, W.; Chen, J. J.; Chen, X. N.; Xu, X. L.; Jiang, M.; Wang, Y.; Lu, J.; Zhou, Z. W. Growth of Fe3O4 nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Adv. 2015, 5, 101121–101126.

    Article  Google Scholar 

  48. Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408–19415.

    Article  Google Scholar 

  49. Jia, X. L.; Wang, J.; Zhu, X.; Wang, T. H.; Yang, F.; Dong, W. J.; Wang, G.; Yang, H. T.; Wei, F. Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 2017, 697, 138–146.

    Article  Google Scholar 

  50. Yan, L. W.; Hong, C. Q.; Sun, B. Q.; Zhao, G. D.; Cheng, Y. H.; Dong, S.; Zhang, D. Y.; Zhang, X. H. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 2017, 9, 6320–6331.

    Article  Google Scholar 

  51. Liu, X. F.; Hao, C. C.; Jiang, H.; Zeng, M; Yu, R. H. Hierarchical NiCo2O4/Co3O4/NiO porous composite: A lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 2017, 5, 3770–3778.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51573149), the Fundamental Research Funds for the Central Universities (No. 2682016CX069), the Science and Technology Planning Project of Sichuan Province (Nos. 2018GZ0132 and 2018GZ0427), and Sichuan Province Science and Technology Innovation Talent Project (No. 2017072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanbin Meng or Zuowan Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, G., Meng, F., Wang, H. et al. Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Res. 12, 1423–1429 (2019). https://doi.org/10.1007/s12274-019-2376-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2376-x

Keywords

Navigation